A general model that predicts single-phase creeping flow pressure drop in microchannels of a noncircular cross section under slip and no-slip regimes is proposed. The model accounts for gradual variations in the cross section and relates the pressure drop to geometrical parameters of the cross section, i.e., area, perimeter, and polar moment of inertia. The accuracy of the proposed model is assessed by comparing the results against experimental and numerical data collected from various studies in the literature for a wide variety of cross-sectional shapes. The suggested model can be used for the design and optimization of microsystems that contain networks of microchannels with noncircular cross sections resulting from different fabrication techniques.

References

References
1.
Lauga
,
E.
,
Stroock
,
A. D.
, and
Stone
,
H. A.
,
2004
, “
Three-Dimensional Flows in Slowly Varying Planar Geometries
,”
Phys. Fluids
,
16
, p.
3051
.10.1063/1.1760105
2.
Juncker
,
D.
,
Schmid
,
H.
,
Drechsler
,
U.
,
Wolf
,
H.
,
Wolf
,
M.
,
Michel
,
B.
,
de Rooij
,
N.
, and
Delamarche
,
E.
,
2002
, “
Autonomous Microfluidic Capillary System
,”
Anal. Chem.
,
74
(
24
), pp.
6139
6144
.10.1021/ac0261449
3.
Gunda
,
N. S. K.
,
Joseph
,
J.
,
Tamayol
,
A.
,
Akbari
,
M.
, and
Mitra
,
S. K.
,
2013
, “
Measurement of Pressure Drop and Flow Resistance in Microchannels With Integrated Micropillars
,”
Microfluid. Nanofluid.
14
(
3-4
), pp.
711
721
.10.1007/s10404-012-1089-1
4.
Fatanat-Didar
,
T.
, and
Tabrizian
,
M.
,
2012
, “
Generating Multiplex Gradients of Biomolecules for Controlling Cellular Adhesion in Parallel Microfluidic Channels
,”
Lab Chip
,
12
, pp.
4363
4371
.10.1039/c2lc40233e
5.
Kim
,
S. M.
,
Sommer
,
G. J.
,
Burns
,
M. A.
, and
Hasselbrink
,
E. F.
,
2006
, “
Low-Power Concentration and Separation Using Temperature Gradient Focusing via Joule Heating
,”
Anal. Chem.
,
78
(
23
), pp.
8028
8035
.10.1021/ac061194p
6.
Akbari
,
M.
,
Bahrami
,
M.
, and
Sinton
,
D.
,
2012
, “
Optothermal Sample Preconcentration and Manipulation With Temperature Gradient Focusing
,”
Microfluid. Nanofluid.
,
12
(
1
), pp.
221
228
.10.1007/s10404-011-0866-6
7.
Khademhosseini
,
A.
,
Langer
,
R.
,
Borenstein
,
J.
, and
Vacanti
,
J. P.
,
2006
, “
Microscale Technologies for Tissue Engineering and Biology
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
8
), pp.
2480
2487
.10.1073/pnas.0507681102
8.
Tamayol
,
A.
,
Akbari
,
M.
,
Annabi
,
N.
,
Paul
,
A.
,
Khademhosseini
,
A.
, and
Juncker
,
D.
,
2012
, “
Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities
,”
Biotechnol. Adv.
(in press).10.1016/j.biotechadv.2012.11.007
9.
Morini
,
G. L.
,
2004
, “
Laminar-to-Turbulent Flow Transition in Microchannels
,”
Nanoscale Microscale Thermophys. Eng.
,
8
(
1
), pp.
15
30
.10.1080/10893950490272902
10.
McDonald
,
J. C.
,
Duffy
,
D. C.
,
Anderson
,
J. R.
,
Chiu
,
D. T.
,
Wu
,
H.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
,
2000
, “
Fabrication of Microfluidic Systems in Poly (Dimethylsiloxane)
,”
Electrophoresis
,
21
(
1
), pp.
27
40
.10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
11.
Oliveira
,
M. S. N.
,
Alves
,
M. A.
,
Pinho
,
F. T.
, and
McKinley
,
G. H.
,
2007
, “
Viscous Flow Through Microfabricated Hyperbolic Contractions
,”
Exp. Fluids
,
43
(
2
), pp.
437
451
.10.1007/s00348-007-0306-2
12.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2011
, “
Geometrical Effects on the Temperature Distribution in a Half-Space Due to a Moving Heat Source
,”
ASME J. Heat Transfer
,
133
, p.
064502
.10.1115/1.4003155
13.
Sparrow
,
E. M.
, and
Prata
,
A. T.
,
1983
, “
Numerical Solutions for Laminar Flow and Heat Transfer in a Periodically Converging-Diverging Tube, With Experimental Confirmation
,”
Numer. Heat Transfer
, Part A,
6
(
4
), pp.
441
461
.
14.
Hemmat
,
M.
, and
Borhan
,
A.
,
1995
, “
Creeping Flow Through Sinusoidally Constricted Capillaries
,”
Phys. Fluids
,
7
(
9
), pp.
2111
2121
.10.1063/1.868462
15.
Liu
,
D.
, and
Garimella
,
S. V.
,
2004
, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
65
72
.10.2514/1.9124
16.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2010
, “
Laminar Fully Developed Flow in Periodically Converging–Diverging Microtubes
,”
Heat Transfer Eng.
,
31
(
8
), pp.
628
634
.10.1080/01457630903463404
17.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2011
, “
Viscous Flow in Variable Cross-Section Microchannels of Arbitrary Shapes
,”
Int. J. Heat Mass Transfer
,
54
(
17
), pp.
3970
3978
.10.1016/j.ijheatmasstransfer.2011.04.028
18.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2010
, “
Laminar Flow in Microchannels With Noncircular Cross Section
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111201
.10.1115/1.4001973
19.
Kim
,
C.
,
Lee
,
K.
,
Kim
,
J. H.
,
Shin
,
K. S.
,
Lee
,
K. J.
,
Kim
,
T. S.
, and
Kang
,
J. Y.
,
2008
, “
A Serial Dilution Microfluidic Device Using a Ladder Network Generating Logarithmic or Linear Concentrations
,”
Lab Chip
,
8
(
3
), pp.
473
479
.10.1039/b714536e
20.
Muzychka
,
Y.
, and
Yovanovich
,
M.
,
2009
, “
Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111105
.10.1115/1.4000377
21.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2002
, “
Laminar Flow Friction and Heat Transfer in Non-Circular Ducts and Channels—Part I: Hydrodynamic Problem
,”
Proceedings of Compact Heat Exchangers: A Festschrift on the 60th Birthday of Ramesh K. Shah
, pp.
123
130
.
22.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
,
128
, pp.
1036
1044
.10.1115/1.2234786
23.
Bahrami
,
M.
,
Tamayol
,
A.
, and
Taheri
,
P.
,
2009
, “
Slip-Flow Pressure Drop in Microchannels of General Cross Section
,”
ASME J. Fluids Eng.
,
131
, p.
031201
.10.1115/1.3059699
24.
Tamayol
,
A.
, and
Hooman
,
K.
,
2011
, “
Slip-Flow in Microchannels of Non-Circular Cross Sections
,”
ASME J. Fluids Eng.
,
133
, p.
091202
.10.1115/1.4004591
25.
Akbari
,
M.
,
Bahrami
,
M.
, and
Sinton
,
D.
,
2011
, “
Viscous Flow in Arbitrary Cross-Section Microchannels of Arbitrary Shape
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3970
3978
.10.1016/j.ijheatmasstransfer.2011.04.028
26.
Shah
,
R. K.
,
London
,
A. L.
, and
White
,
F. M.
,
1980
, “
Laminar Flow Forced Convection in Ducts
,”
ASME J. Fluids Eng.
,
102
, pp.
256
258
.10.1115/1.3240677
27.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
New York
.
28.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2001
, “
Thermal Resistance Models for Non-Circular Moving Heat Sources on a Half Space
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
624
632
.10.1115/1.1370516
29.
Taheri
,
P.
,
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2009
, “
Couette and Poiseuille Microflows: Analytical Solutions for Regularized 13-Moment Equations
,”
Phys. Fluids
,
21
, p.
017102
.10.1063/1.3064123
30.
Roy
,
S.
,
Raju
,
R.
,
Chuang
,
H. F.
,
Cruden
,
B. A.
, and
Meyyappan
,
M.
,
2003
, “
Modeling Gas Flow Through Microchannels and Nanopores
,”
J. Appl. Phys.
,
93
, pp.
4870
4879
.10.1063/1.1559936
31.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
,
2006
, “
Slip-Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
45
(
9
), pp.
870
881
.10.1016/j.ijthermalsci.2005.12.008
32.
Karniadakis
,
G.
,
Beşkök
,
A.
, and
Aluru
,
N. R.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulations
,
Springer Verlag
,
Berlin
.
33.
Manton
,
M. J.
,
1971
, “
Low Reynolds Number Flow in Slowly Varying Axisymmetric Tubes
,”
J. Fluid Mech.
,
49
(
03
), pp.
451
459
.10.1017/S0022112071002192
34.
Chow
,
J. C. F.
, and
Soda
,
K.
,
1972
, “
Laminar Flow in Tubes With Constriction
,”
Phys. Fluids
,
15
, p.
1700
.10.1063/1.1693765
35.
Van Dyke
,
M.
,
1987
, “
Slow Variations in Continuum Mechanics
,”
Adv. Appl. Mech.
,
25
, pp.
1
45
.10.1016/S0065-2156(08)70276-X
36.
Wild
,
R.
,
Pedley
,
T. J.
, and
Riley
,
D. S.
,
1977
, “
Viscous Flow in Collapsible Tubes of Slowly Varying Elliptical Cross-Section
,”
J. Fluid Mech.
,
81
(
02
), pp.
273
294
.10.1017/S0022112077002031
37.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
46
(
14
), p.
2519
.10.1016/S0017-9310(03)00106-6
38.
Stanley
,
R. S.
,
Ameel
,
T. A.
, and
Barron
,
R. F.
,
1997
, “
Two-Phase Flow in Microchannels
,”
DTIC Document
.
39.
Papautsky
,
I.
,
Ameel
,
T.
, and
Frazier
,
A. B.
, “
A Review of Laminar Single-Phase Flow in Microchannels
,”
Proceedings of the International Mechanical Engineers Congress Expos (IMECE)
, pp.
3067
3075
.
40.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2009
, “
Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section
,”
ASME J. Fluids Eng.
,
131
, p.
041202
.10.1115/1.3077143
41.
Kim
,
M. S.
,
Araki
,
T.
,
Inaoka
,
K.
, and
Suzuki
,
K.
,
2000
, “
Gas Flow Characteristics in Microtubes
,”
JSME Int. J. Ser. B
,
43
(
4
), pp.
634
639
.10.1299/jsmeb.43.634
42.
Araki
,
T.
,
Kim
,
M. S.
,
Iwai
,
H.
, and
Suzuki
,
K.
,
2002
, “
An Experimental Investigation of Gaseous Flow Characteristics in Microchannels
,”
Nanoscale Microscale Thermophys. Eng.
,
6
(
2
), pp.
117
130
.10.1080/10893950252901268
You do not currently have access to this content.