Computer simulations of the flow around a pair of two-dimensional, tandem circular cylinders in a flow, for Reynolds numbers in the range 1–40, are described. Cylinder surface-to-surface separations in the range 0.1<s/D<400 (D = cylinder diameter) were considered. The computed wake of a single cylinder at these low to moderate Reynolds numbers was in surprisingly good agreement with the laminar wake approximation, and a simple theory is presented to explain this agreement. With tandem cylinders, the drag on the downstream cylinder is a monotonic function of the cylinder separation. The laminar wake approximation can be used to explain reasonably well the variation in drag. The drag on the upstream cylinder is also a monotonic function of separation distance provided that the Reynolds number is less than about 10. For Reynolds numbers between 10 and 40, the upstream cylinder drag first decreases as separation increases up to a few diameters and then increases monotonically with separation distance.

References

References
1.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinder. Vol. 1: Fundamentals
,
Oxford University Press
,
New York
.
2.
Zdravkovich
,
M. M.
,
2003
,
Flow Around Circular Cylinder. Vol. 2: Applications
,
Oxford University Press
,
New York
.
3.
Young
,
E. W. K.
,
Martinez
,
D. M.
, and
Olson
,
J. A.
,
2006
, “
The Sedimentation of Papermaking Fibers
,”
AIChE J.
,
52
, pp.
2697
2706
.10.1002/aic.10902
4.
Tatsuno
,
M.
, and
Ishii
,
K.
,
1989
, “
Flow Visualization and Force Measurements on Two Cylinders at Low Reynolds Numbers
,”
Handbook of Flow Visualization
,
W. J.
Yang
, ed.,
Hemisphere Publications
,
Washington DC
.
5.
Tatsuno
,
M.
,
1989
, “
Steady Flows Around Two Cylinders at Low Reynolds Numbers
,”
Fluid Dyn.
, Res.
5
, pp.
49
60
.10.1016/0169-5983(89)90010-5
6.
Davis
,
A. M. J.
, and
O'Neill
,
M. E.
,
1976
, “
Separation From the Surface of Two Equal Spheres in Stokes Flow
,”
J. Fluid Mech.
,
77
, pp.
625
644
.10.1017/S0022112076002814
7.
Miyazaki
,
T.
, and
Hasimoto
,
H.
,
1980
, “
Separation of Creeping Flow Past Two Circular Cylinders
,”
J. Phys. Soc. Jpn.
,
49
, pp.
1611
1617
.10.1143/JPSJ.49.1611
8.
Taneda
,
S.
,
1979
, “
Visualization of Separating Stokes Flows
,”
J. Phys. Soc. Jpn.
,
46
, pp.
1935
1942
.10.1143/JPSJ.46.1935
9.
Inoue
,
Q.
, and
Sakuragi
,
A.
,
2008
, “
Vortex Shedding From a Circular Cylinder of Finite Length at Low Reynolds Numbers
,”
Phys. Fluids
,
20
, p.
033601
.10.1063/1.2844875
10.
Norberg
,
C.
,
1994
, “
An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio
,”
J. Fluid Mech.
,
258
, pp.
287
346
.10.1017/S0022112094003332
11.
Norberg
,
C.
,
2001
, “
Flow Around a Circular Cylinder: Aspect of Fluctuating Lift
,”
J. Fluids Struct.
,
15
, pp.
459
469
.10.1006/jfls.2000.0367
12.
Yuan
,
H.
, and
Prosperetti
,
A.
,
1994
, “
On the in-Line Motion of Two Spherical Bubbles in a Viscous Fluid
,”
J. Fluid Mech.
,
278
, pp.
325
349
.10.1017/S0022112094003733
13.
Thomas
,
D. G.
, and
Kraus
,
K. A.
,
1964
, “
Interaction of Vortex Streets
,”
Jpn. J. Appl. Phys.
,
35
, pp.
3458
3459
.10.1063/1.1713250
14.
Sumner
,
D.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
2000
, “
Flow-Pattern Identification for Two Staggered Circular Cylinders in Cross-Flow
,”
J. Fluid Mech.
,
411
, pp.
263
303
.10.1017/S0022112099008137
15.
Meneghini
,
J. R.
,
Saltara
,
F.
,
Siqueira
,
C. L. R.
, and
Ferrari
,
J. A.
,
2001
, “
Numerical Simulation of Flow Interference Between Two Circular Cylinders in Tandem and Side-by-Side Arrangements
,”
J. Fluids Struct.
,
15
, pp.
327
350
.10.1006/jfls.2000.0343
16.
Sharman
,
B.
,
Lien
,
F. S.
,
Davidson
,
L.
, and
Norberg
,
C.
,
2005
, “
Numerical Predictions of Low Reynolds Number Flows Over Two Tandem Circular Cylinders
,”
Int. J. Numer. Methods Fluids
,
47
, pp.
423
447
.10.1002/fld.812
17.
Carmo
,
B. S.
, and
Meneghini
,
J. R.
,
2006
, “
Numerical Investigation of the Flow Around Two Circular Cylinders in Tandem
,”
J. Fluids Struct.
,
22
, pp.
979
988
.10.1016/j.jfluidstructs.2006.04.016
18.
Igarashi
,
T.
,
1981
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem
,”
Bulletin of JSME.
,
24
, pp.
323
331
.10.1299/jsme1958.24.323
19.
Zdravkovich
,
M. M.
,
1987
, “
The Effect of Interference Between Circular Cylinders in Cross Flow
,”
J. Fluids Struct.
,
1
, pp.
239
261
.10.1016/S0889-9746(87)90355-0
20.
Chatterjee
,
D.
, and
Amiroudine
,
S.
,
2010
, “
Two-Dimensional Mixed Convection Heat Transfer From Confined Tandem Square Cylinders in Cross-Flow at Low Reynolds Numbers
,”
Int. Commun. Heat Mass Transfer
,
34
, pp.
7
16
.10.1016/j.icheatmasstransfer.2009.10.007
21.
Fornberg
,
B.
,
1980
, “
A Numerical Study of Steady Viscous Flow Past a Circular Cylinder
,”
J. Fluid Mech.
,
98
, pp.
819
855
.10.1017/S0022112080000419
22.
Sen
,
S.
,
Mittal
,
S.
, and
Biswas
,
G.
,
2009
, “
Steady Separated Flow Past a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
620
, pp.
89
119
.10.1017/S0022112008004904
23.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York.
24.
Cengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2005
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
.
25.
Taneda
,
S.
,
1956
, “
Experimental Investigation of the Wake Behind Cylinders and Plates at Low Reynolds Numbers
,”
J. Phys. Soc. Jpn.
,
11
, pp.
302
307
.10.1143/JPSJ.11.302
26.
Sucker
,
D.
, and
Brauer
,
H.
,
1975
, “
Fluiddynamik Bei Quer Angestromten Zylindem
,”
Warme-Stoffubertragung
,
8
, pp.
149
158
.10.1007/BF01681556
27.
Ruzicka
,
M. C.
,
2000
, “
On Bubbles Rising in Line
,”
Int. J. Multiphase Flow
,
26
, pp.
1141
1181
.10.1016/S0301-9322(99)00078-6
28.
Zhu
,
C.
,
Liang
,
S. C.
, and
Fan
,
L. S.
,
1994
, “
Particle Wake Effects on the Drag Force of an Interactive Particle
,”
Int. J. Multiphase Flow
,
20
, pp.
117
129
.10.1016/0301-9322(94)90009-4
You do not currently have access to this content.