An experiment in a rectangular basin of water is used to demonstrate that a large-scale circulation will result from a zero-mean thermal forcing. The thermal force is a spatially periodic pattern of heating and cooling at the top surface, achieved with an interdigitated array of hot and cold tubes. The experimental results show a very robust, steady flow with ascending flows at each end of the tank and a single descending jet near the left wall. These results suggest that small-scale forcing in surface-driven flows may result in significant large-scale subsurface motion.

References

References
1.
Rayleigh
,
L.
,
1916
, “
On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side
,”
Philos. Mag.
,
32
, pp.
529
546
.10.1080/14786441608635602
2.
Koschmieder
,
E. L.
,
1993
,
Bénard Cells and Taylor Vortices
,
Cambridge University Press
,
Cambridge, UK
.
3.
Bodenschatz
,
E.
,
Pesch
,
W.
, and
Ahlers
,
G.
,
2000
, “
Recent Developments in Rayleigh-Bénard Convection
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
709
778
.10.1146/annurev.fluid.32.1.709
4.
Trias
,
F. X.
,
Gorobets
,
A.
,
Soria
,
M.
, and
Oliva
,
A.
,
2010
, “
Direct Numerical Simulation of a Differentially Heated Cavity of Aspect Ratio 4 With Rayleigh Numbers Up to 1011—Part I: Numerical Methods
,”
Int. J. Heat Mass Transfer
,
53
, pp.
665
673
.10.1016/j.ijheatmasstransfer.2009.10.026
5.
Cheikh
,
N. B.
,
Beya
,
B. B.
, and
Lili
,
T.
,
2007
, “
Aspect Ratio Effect on Natural Convection Flow in a Cavity Submitted to a Periodical Temperature Boundary
,”
ASME J. Heat Transfer
,
129
(8), pp.
1060
1068
.10.1115/1.2728908
6.
Trias
,
F. X.
,
Soria
,
M.
,
Oliva
,
A.
, and
Pereza-Segarra
,
C. D.
,
2007
, “
Direct Numerical Simulations of Two- and Three-Dimensional Turbulent Natural Convection Flows in a Differentially Heated Cavity of Aspect Ratio 4
,”
J. Fluid Mech.
,
586
, pp.
259
293
.10.1017/S0022112007006908
7.
Verzicco
,
R.
, and
Sreenivasan
,
K. R.
,
2008
, “
A Comparison of Turbulent Thermal Convection Between Conditions of Constant Temperature and Constant Heat Flux
,”
J. Fluid Mech.
,
595
, pp.
203
219
.10.1017/S0022112007009135
8.
Wüest
,
A.
, and
Lorke
,
A.
,
2002
, “
Small-Scale Hydrodynamics in Lakes
,”
Annu. Rev. Fluid Mech.
,
35
, pp.
373
412
.10.1146/annurev.fluid.35.101101.161220
9.
Kumar
,
V.
,
Basu
,
B.
,
Enger
,
S.
,
Brenner
,
G.
, and
Durst
,
F.
,
2003
, “
Role of Marangoni Convection in Si-Czochralski Melts, Part I: 3D Predictions Without Crystal
,”
J. Cryst. Growth
,
253
, pp.
142
154
.10.1016/S0022-0248(03)01043-1
10.
McWilliams
,
J. C.
, and
Restrepo
,
J. M.
,
1999
, “
The Wave-Driven Ocean Circulation
,”
J. Phys. Oceanogr.
,
29
, pp.
2523
2540
.10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
11.
Whitehead
,
J. A.
,
1995
, “
Thermohaline Ocean Processes and Models
,”
Annu. Rev. Fluid Mech.
,
27
, pp.
89
113
.10.1146/annurev.fl.27.010195.000513
12.
Wunsch
,
C.
, and
Ferrari
,
R.
,
2004
, “
Vertical Mixing, Energy, and the General Circulation of the Oceans
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
281
314
.10.1146/annurev.fluid.36.050802.122121
13.
Shankar
,
P. N.
, and
Deshpande
,
M. D.
,
2000
, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
93
136
.10.1146/annurev.fluid.32.1.93
14.
Osman
,
K. B.
,
McHugh
,
J. P.
, and
Wei
,
T.
,
2008
, “
Patterns in Surface Driven Flows
,”
Phys. Fluids
,
20
(
10
), p.
103602
.10.1063/1.2997367
15.
Rossby
,
H. T.
,
1965
, “
On Thermal Convection Driven by Non-Uniform Heating From Below: An Experimental Study
,”
Deep-Sea Res.
,
12
, pp.
9
16
.10.1016/0011-7471(65)91336-7
16.
Rossby
,
T.
,
1998
, “
Numerical Experiments With a Fluid Heated Non-Uniformly From Below
,”
Tellus
,
50
, pp.
242
257
.10.1034/j.1600-0870.1998.t01-1-00006.x
17.
Stommel
,
H.
,
1962
, “
On the Smallness of the Sinking Regions in the Ocean
,”
Proc. Natl. Acad. Sci.
,
48
, pp.
766
772
.10.1073/pnas.48.5.766
18.
Farias
,
J. E.
, and
McHugh
,
J. P.
,
2002
, “
The Symmetric Driven Cavity
,”
Phys. Fluids
,
14
, pp.
3179
3188
.10.1063/1.1494073
19.
Niemela
,
J. J.
,
Skrbek
,
L.
,
Sreenivasan
,
K. R.
, and
Donnelly
,
R. J.
,
2000
, “
Turbulent Convection at Very High Rayleigh Numbers
,”
Nature
,
404
, pp.
837
840
.10.1038/35009036
20.
Niemela
,
J. J.
,
Skrbek
,
L.
,
Sreenivasan
,
K. R.
, and
Donnelly
,
R. J.
,
2001
, “
The Wind in Confined Thermal Convection
,”
J. Fluid Mech.
,
449
, pp.
169
178
.10.1017/S0022112001006310
21.
Krishnamurti
,
R.
, and
Howard
,
L. N.
,
1981
, “
Large-Scale Flow Generation in Turbulent Convection
,”
Proc. Natl. Acad. Sci.
,
78
, pp.
1981
1985
.10.1073/pnas.78.4.1981
22.
Qiu
,
X. L.
, and
Tong
,
P.
,
2001
, “
Large-Scale Velocity Structures in Turbulent Thermal Convection
,”
Phys. Rev. E
,
64
(
3
), p.
036304
.10.1103/PhysRevE.64.036304
23.
Ciliberto
,
S.
,
Cioni
,
S.
, and
Laroche
,
C.
,
1996
, “
Large-Scale Flow Properties of Turbulent Thermal Convection
,”
Phys. Rev. E
,
54
, pp.
R5901
R5904
.10.1103/PhysRevE.54.R5901
You do not currently have access to this content.