Results are presented of laboratory experiments undertaken to study the dynamics of wave propagation and transformation within the surf zone. The study involved measuring the external flow characteristics of regular plunging waves propagating along a 20 m long flume fitted with a 1:20 plane slope. To achieve this, monochromatic waves of frequency 0.4 Hz and a deep water wave height of 12 cm were generated by a servo-controlled piston-type wave maker. A set of calibrated parallel-wire capacitive wave gauges were employed to measure statistics of the free surface elevation along the slope in order to get an insight into the wave breaking behavior. To characterize the wave field, free surface elevation measurements were made in the vicinity of the break point. The measured time series data were analyzed at each flume position to obtain statistics of the mean water level, wave height, and wave velocity along the flume. Results show that as the wave propagates from deep water towards shallow water, there is an increase in the wave height, reaching a maximum height of about 21.5 cm at the break point, and then decreases sharply thereafter. Wave phase velocity calculations at different flume positions were made from the measured time series. Cross correlation techniques were used to determine the phase difference between the reference wave near the generator and the wave at various points along the flume. The local wave velocity was obtained by taking the phase difference between two points spaced 0.2 m apart. A comparison was made between the measured wave phase velocity, its linear shallow water ((gh)) approximation and the roller model concept wave velocity (1.3(gh)), at various points along the flume. The measured wave velocity c was found to lie in the range (gh)<c<1.3(gh) for most of the positions except near the break point. After the break point, the measured wave velocity is up to 38% higher than the theoretical value predicted using the roller model concept. Also noted is the variability of the phase speed in the breaking region. The present experiments of quantifying the mean macroscopic properties of breaking waves are a necessary prerequisite for more detailed experiments involving internal fluid velocity measurements that will follow.

References

References
1.
Hoque
,
A.
,
2008
, “
Studies of Water Level Rise by Entrained Air in the Surf Zone
,”
Exp. Therm. Fluid Sci.
,
32
, pp.
973
979
.10.1016/j.expthermflusci.2007.11.003
2.
Tsai
,
C.-P.
,
Chen
,
H.-B.
,
Hwung
,
H. H.
, and
Huang
,
M.-J.
,
2005
, “
Examination of Empirical Formulas for Wave Shoaling and Breaking on Steep Slopes
,”
Ocean Eng.
,
32
, pp.
469
483
.10.1016/j.oceaneng.2004.05.010
3.
Rattanapitikon
,
W.
, and
Shibayama
,
T.
,
2000
, “
Verification and Modification of Breaker Height Formulas
,”
Coast Eng. J.
,
42
(
4
), pp.
389
406
.10.1142/S0578563400000195
4.
Rapp
,
R. J.
, and
Melville
,
W. K.
,
1990
, “
Laboratory Measurements of Deep-Water Breaking Waves
,”
Philos. T. R. Soc. Lond.
,
331
(
1622
), pp.
735
800
.10.1098/rsta.1990.0098
5.
De Vries
,
S.
,
Hill
,
D. F.
,
De Schipper
,
M. A.
, and
Stive
,
M. J. F.
,
2011
, “
Remote Sensing of Surf Zone Waves Using Stereo Imaging
,”
Coast Eng.
,
58
, pp.
239
250
.10.1016/j.coastaleng.2010.10.004
6.
Massel
,
S. R.
,
1996
, “
On the Largest Wave Height in Water of Constant Depth
,”
Ocean Eng.
,
23
(
7
), pp.
553
573
.10.1016/0029-8018(95)00049-6
7.
Raubenheimer
,
B.
,
Elgar
,
S.
, and
Guza
,
R. T.
,
2004
, “
Observations of Swash Zone Velocities: A Note on Friction Coefficients
,”
J. Geophys. Res.
,
109
, p.
C01027
.10.1029/2003JC001877
8.
Mory
,
M.
, and
Hamm
,
L.
,
1997
, “
Wave Height, Setup and Currents Around a Detached Breakwater Submitted to Regular or Random Wave Forcing
,”
Coast Eng.
,
31
(
1–4
), pp.
77
96
.10.1016/S0378-3839(96)00053-1
9.
Harris
,
D. L.
,
1976
, “
Wind-Generated Waves for Laboratory Studies
,” U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Technical Paper 76-12.
10.
Greben
,
J. M.
,
Gledhill
,
I.
,
Cooper
,
A.
, and
de Villiers
,
R.
,
2010
, “
Characterization and Properties of Breakwater Structures Modelled by a Physics Engine
,”
7th South African Conference on Computational and Applied Mechanics
(SACAM10)
,
Pretoria
, South Africa.
11.
Baldock
,
T. E.
, and
Swan
,
C.
,
1996
, “
Extreme Waves in Shallow and Intermediate Water Depths
,”
Coast Eng.
,
27
(
1–2
), pp.
21
46
.10.1016/0378-3839(95)00040-2
12.
Suhayda
,
J. N.
, and
Pettigrew
,
N. R.
,
1977
, “
Observations of Wave Height and Wave Celerity in the Surf Zone
,”
J. Geophys. Res.
,
82
(
9
), pp.
1419
1424
.10.1029/JC082i009p01419
13.
Stansel
,
P.
, and
MacFarlane
,
C.
,
2002
, “
Experimental Investigation of Wave Breaking Criteria Based on Wave Phase Speeds
,”
J. Phys. Oceanogr.
,
32
, pp.
1269
1283
.10.1175/1520-0485(2002)032<1269:EIOWBC>2.0.CO;2
14.
Yoo
,
J.
,
Fritz
,
H. M.
,
Haas
,
K. A.
,
Work
,
P. A.
,
Barnes
,
C. F.
, and
Cho
,
Y.
,
2008
, “
Observation of Wave Celerity Evolution in the Nearshore Using Digital Video Imagery
,” American Geophysical Union, Fall Meeting 2008, Abstract No. OS13D-1224.
15.
Lippmann
,
T. C.
, and
Holman
,
R. A.
,
1991
, “
Phase Speed and Angle of Breaking Waves Measured With Video Techniques
,”
Coastal Sediments, ’91
, N. Kraus, ed.,
American Society of Civil Engineers (ASCE)
,
New York
, pp.
542
556
.
16.
Tissier
,
M.
,
Bonneton
,
P.
,
Almara
,
R.
,
Castelle
,
B.
,
Bonneton
,
N.
, and
Nahon
,
A.
,
2011
, “
Field Measurements and Non Linear Prediction of Wave Celerity in the Surf Zone
,”
Eur. J. Mech. B
,
30
, pp.
635
641
.10.1016/j.euromechflu.2010.11.003
17.
Holland
,
T. K.
,
2001
, “
Application of the Linear Dispersion Relation With Respect to Depth Inversion and Remotely Sensed Imagery
,”
IEEE Trans. Geosci. Remote Sens.
,
39
(
9
), pp.
2060
2072
.10.1109/36.951097
18.
Kimmoun
,
O.
, and
Branger
,
H.
,
2007
, “
A Particle Image Velocimetry Investigation on Laboratory Surf-Zone Breaking Waves Over a Sloping Beach
,”
J. Fluid Mech.
,
588
, pp.
353
397
.10.1017/S0022112007007641
19.
Stockdon
,
H. F.
, and
Holman
,
R. A.
,
2000
, “
Estimation of Wave Phase Speed and Nearshore Bathymetry From Video Imagery
,”
J. Geophys. Res.
,
105
(
C9
), pp.
22015
22033
.10.1029/1999JC000124
20.
Nelson
,
R.
,
1997
, “
Height Limits in Top Down and Bottom Up Wave Environments
,”
Coast Eng.
,
32
(
2–3
), pp.
247
254
.10.1016/S0378-3839(97)81752-8
21.
Miche
,
R.
,
1944
, “
Mouvements ondulatoires des mers en profondeur constante ou decroissante
,”
Annales des Ponts et Chaussees
, pp.
25
78
, 131–164, 270–292, 369–406.
22.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
2000
,
Water Wave Mechanics for Engineers and Scientists (Advanced Series on Ocean Engineering)
, Vol. 2,
World Scientific Publishing Co, Singapore
.
23.
Stive
,
M. J. F.
,
1984
, “
Energy Dissipation in Waves Breaking on a Gentle Slope
,”
Coast Eng.
,
8
, pp.
99
127
.10.1016/0378-3839(84)90007-3
24.
Schaffer
,
H.
,
Madsen
,
P.
, and
Deigaard
,
R.
,
1998
, “
A Boussinesq Model for Wave Breaking in Shallow Water
,”
Coast Eng.
,
20
(
3–4
), pp.
185
202
.10.1016/0378-3839(93)90001-O
25.
Madsen
,
P.
,
Sorensen
,
O.
, and
Schaffer
,
H. A.
,
1997
, “
Surf Zone Dynamics Simulated by a Boussinesq Type Model—Part I: Model Description and Cross-Shore Motion of Regular Waves
,”
Coast Eng.
,
32
, pp.
255
287
.10.1016/S0378-3839(97)00028-8
26.
Stive
,
M. J. F.
,
1980
, “
Velocity and Pressure Field of Spilling Breakers
,” Proceedings 17th International Conference on Coastal Engineering, ASCE, pp.
547
565
.
27.
Stansby
,
P. K.
, and
Feng
,
T.
,
2005
, “
Kinematics and Depth-Integrated Terms in Surf Zone Waves From Laboratory Measurement
,”
J. Fluid Mech.
,
529
, pp.
279
310
.10.1017/S0022112005003599
28.
Thornton
,
E. B.
, and
Guza
,
R. T.
,
1982
, “
Energy Saturation and Phase Speeds Measured on a Natural Beach
,”
J. Geophys. Res.
,
87
(C
12
), pp.
9499
9508
.10.1029/JC087iC12p09499
29.
Puleo
,
J. A.
,
Farquharson
,
G.
,
Frasier
,
S. J.
, and
Holland
,
K. T.
, 2003, “
Comparison of Optical and Radar Measurements of Surf and Swash Zone Velocity Fields
,”
J. Geophys. Res.
,
108
(
C3
), pp.
3100
3112
.10.1029/2002JC001483
30.
HR Wallingford, Oxfordshire, UK, www.hrwallingford.co.uk, e-mail: info@hrwallingford.com
31.
Govender
,
K.
,
Alport
,
M. J.
,
Mocke
,
G.
, and
Michallet
,
H.
,
2002
, “
Video Measurements of Fluid Velocities and Water Levels in Breaking Waves
,”
Phys. Scr.
,
2002
(
T97
), pp.
152
159
.10.1238/Physica.Topical.097a00152
32.
Govender
,
K.
,
Alport
,
M. J.
, and
Mocke
,
G.
,
2002
, “
Video Imaged Surf Zone Wave and Roller Structures and Flow Fields
,”
J. Geophys. Res.
,
107
(C
7
), pp.
3072
3083
.10.1029/2000JC000755
33.
Cox
,
D. T.
, and
Shin
,
S.
,
2003
, “
Laboratory Measurements of Void Fraction and Turbulence in the Bore Region of Surf Zone Waves
,”
J. Eng. Mech.
,
129
(
10
), pp.
1197
1205
.10.1061/(ASCE)0733-9399(2003)129:10(1197)
34.
Cowen
,
E. A.
,
Sou
,
I. M.
,
Liu
,
P. L. F.
, and
Raubenheimer
,
B.
,
2003
, “
Particle Image Velocimetry Measurements Within a Laboratory-Generated Swash Zone
,”
J. Eng. Mech.
,
129
(
10
), pp.
1119
1129
.10.1061/(ASCE)0733-9399(2003)129:10(1119)
35.
De Serio
,
F.
, and
Mossa
,
M.
,
2006
, “
Experimental Study on the Hydrodynamics of Regular Breaking Waves
,”
Coast Eng.
,
53
, pp.
99
113
.10.1016/j.coastaleng.2005.09.021
36.
Sou
,
I. M.
,
Cowen
,
E. A.
, and
Liu
,
P. L. F.
,
2010
, “
Evolution of the Turbulence Structure in the Surf and Swash Zones
,”
J. Fluid Mech.
,
644
, pp.
193
216
.10.1017/S0022112009992321
37.
Huang
,
Z.-C.
,
Hsiao
,
S.-C.
,
Hwung
,
H.-H.
, and
Chang
,
K.-A.
,
2009
, “
Turbulence and Energy Dissipations of Surf-Zone Spilling Breakers
,”
Coast Eng.
,
56
, pp.
733
746
.10.1016/j.coastaleng.2009.02.003
38.
Sou
,
I. M.
, and
Yeh
,
H.
,
2011
, “
Laboratory Study of the Cross-Shore Flow Structure in the Surf and Swash Zones
,”
J. Geophys. Res.
,
116
(
C3
), p.
C03002
.10.1029/2010JC006700
39.
Camenen
,
B.
, and
Larson
,
M.
,
2007
, “
Predictive Formulas for Breaker Depth Index and Breaker Type
,”
J. Coast. Res.
,
23
(
4
), pp.
1028
1041
.10.2112/05-0566.1
40.
Yoo
,
J.
,
Fritz
,
H. M.
,
Haas
,
K. A.
,
Work
,
P. A.
, and
Barnes
,
C. F.
,
2011
, “
Depth Inversion in the Surf Zone With Inclusion of Wave Nonlinearity Using Video-Derived Celerity
,”
J. Water. Port. Coast. Ocean Eng.
,
137
(
2
), pp.
95
106
.10.1061/(ASCE)WW.1943-5460.0000068
41.
LeBlond
,
P. H.
, and
Mysak
,
L. A.
,
1978
,
Waves in the Ocean (Oceanography Series)
,
Elsevier, Amsterdam
.
42.
Battjes
,
J. A.
,
1988
, “
Surf Zone Dynamics
,”
Ann. Rev. Fluid Mech.
,
20
(
1
), pp.
257
291
.10.1146/annurev.fl.20.010188.001353
43.
Cox
,
D.
,
Kobayashi
,
N.
, and
Okayasu
,
A.
,
1995
, “
Experimental and Numerical Modeling of Surf Zone Hydrodynamics
,” Center for Applied and Coastal Research, Technical Report No. CACR-95-07.
44.
Mocke
,
G.
,
2001
, “
Structure and Modeling of Surf Zone Turbulence Due to Wave Breaking
,”
J. Geophys. Res.
,
106
(C
8
), pp.
17039
17057
.10.1029/2000JC900163
45.
Petti
,
M.
, and
Longo
,
S.
,
2001
, “
Turbulence Experiments in the Swash Zone
,”
Coast Eng.
,
43
(
1
), pp.
1
24
.10.1016/S0378-3839(00)00068-5
46.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1975
,
Digital Signal Processing
,
Prentice-Hall, Englewood Cliffs, NJ
.
47.
Okamoto
,
T.
,
Fortes
,
C. J.
, and
Basco
,
D. R.
,
2010
, “
Bore Propagation Speed at the Termination of Wave Breaking
,”
Proceedings of 32nd International Conference on Coastal Engineering
, China, pp.
2
14
.
You do not currently have access to this content.