We study the nonlinear Rayleigh–Taylor instability of the interface between two viscous fluids, when the phases are enclosed between two horizontal cylindrical surfaces coaxial with the interface, and when there is mass and heat transfer across the interface. The fluids are considered to be viscous and incompressible with different kinematic viscosities. The method of multiple expansions has been used for the investigation. In the nonlinear theory, it is shown that the evolution of the amplitude is governed by a Ginzburg–Landau equation. The various stability criteria are discussed both analytically and numerically and stability diagrams are obtained. It has been observed that the heat and mass transfer has stabilizing effect on the stability of the system in the nonlinear analysis.

References

References
1.
Hsieh
,
D. Y.
,
1972
, “
Effects of Heat and Mass Transfer on Rayleigh–Taylor Instability
,”
Trans. ASME
,
94
(1), pp.
156
160
.10.1115/1.3425353
2.
Hsieh
,
D. Y.
,
1978
, “
Interfacial Stability With Mass and Heat Transfer
,”
Phys. Fluids
,
21
, pp.
745
748
.10.1063/1.862292
3.
Ho
,
S. P.
,
1980
, “
Linear Rayleigh-Taylor Stability of Viscous Fluids With Mass and Heat Transfer
,”
J. Fluid Mech.
,
101
, pp.
111
127
.10.1017/S0022112080001565
4.
Khodaparast
,
K. A.
,
Kawaji
,
M.
, and
Antar
,
B. N.
,
1994
, “
The Rayleigh–Taylor and Kelvin–Helmholtz Stability of a Viscous Liquid-Vapor Interface With Heat and Mass Transfer
,”
Phys. Fluids
,
7
, pp.
359
364
.10.1063/1.868633
5.
Nayak
,
A. R.
, and
Chakraborty
,
B. B.
,
1984
, “
Kelvin–Helmholtz Stability With Mass and Heat Transfer
,”
Phys. Fluids
,
27
, pp.
1937
1941
.10.1063/1.864849
6.
Wu
,
D.
, and
Wang
,
D.
,
1991
, “
The Kelvin–Helmholtz Instability of Cylindrical Flow With a Shear Layer
,”
Mon. Not. R. Astro. Soc.
,
250
, pp.
760
768
.
7.
Elhefnawy
,
A. R. F.
, and
Radwan
,
A. E.
,
1992
, “
The Effect of Magnetic Fields on the Stability of a Cylindrical Flow With Mass and Heat Transfer
,”
Phys. A
,
190
, pp.
330
345
.10.1016/0378-4371(92)90040-W
8.
Hsieh
,
D. Y.
,
1979
, “
Nonlinear Rayleigh–Taylor Stability With Mass and Heat Transfer
,”
Phys. Fluids
,
22
, pp.
1435
1439
.10.1063/1.862763
9.
Lee
,
D. S.
,
2003
, “
Nonlinear Instability of Cylindrical Flow With Mass and Heat Transfer
,”
Phys. Scr.
,
67
, pp.
420
426
.10.1238/Physica.Regular.067a00420
10.
Joseph
,
D. D.
, and
Liao
,
T.
,
1994
, “
Potential Flows of Viscous and Viscoelastic Fluids
,”
J. Fluid Mech.
,
256
, pp.
1
23
.10.1017/S0022112094000741
11.
Joseph
,
D. D.
,
Belanger
,
J.
, and
Beavers
,
G. S.
,
1999
, “
Breakup of a Liquid Drop Suddenly Exposed to a High- Speed Airstream
,”
Inter. J. Multiphase Flow
,
25
, pp.
1263
1303
.10.1016/S0301-9322(99)00043-9
12.
Joseph
,
D. D.
,
Beavers
,
G. S.
, and
Funada
,
T.
,
2002
, “
Rayleigh–Taylor Instability of Viscoelastic Drops at High Weber Numbers
,”
J. Fluid Mech.
,
453
, pp.
109
132
.10.1017/S0022112001006802
13.
Asthana
,
R.
,
Awasthi
,
M. K.
, and
Agrawal
,
G. S.
,
2012
, “
Viscous Potential Flow Analysis of Rayleigh–Taylor Instability of Cylindrical Interface
,”
Appl. Mech. Mater.
,
110–116
, pp.
769
775
.10.4028/www.scientific.net/AMM.110-116.769
14.
Asthana
,
R.
, and
Agrawal
,
G. S.
,
2007
, “
Viscous Potential Flow Analysis of Kelvin–Helmholtz Instability With Mass Transfer and Vaporization
,”
Phys. A
,
382
, pp.
389
404
.10.1016/j.physa.2007.04.037
15.
Awasthi
,
M. K.
, and
Agrawal
,
G. S.
,
2011
, “
Viscous Potential Flow Analysis of Rayleigh–Taylor Instability With Heat and Mass Transfer
,”
Int. J. Appl. Math. Mech.
,
7
(
12
), pp.
73
84
. Available at http://ijamm.bc.cityu.edu.hk/ijamm/outbox/Y2011V7N12P73C9769840.pdf
16.
Kim
,
H. J.
,
Kwon
,
S. J.
,
Padrino
,
J. C.
, and
Funada
,
T.
,
2008
, “
Viscous Potential Flow Analysis of Capillary Instability With Heat and Mass Transfer
,”
J. Phys. A: Math. Theor.
,
41
, p.
335205
.10.1088/1751-8113/41/33/335205
17.
Awasthi
,
M. K.
, and
Agrawal
,
G. S.
,
2012
, “
Nonlinear Analysis of Capillary Instability With Heat and Mass Transfer
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
2463
2475
.10.1016/j.cnsns.2011.10.015
18.
Lange
,
C. G.
, and
Newell
,
A. C.
,
1974
, “
A Stability Criterion for Envelope Equations
,”
SIAM J. Appl. Math.
,
27
, pp.
441
456
.10.1137/0127034
You do not currently have access to this content.