Lattice Boltzmann method (LBM) is a relatively recent computational technique for fluid dynamics that derives its basis from a mesoscopic physics involving particle motion. While the approach has been studied for different types of fluid flow problems, its application to eddy-capturing simulations of building block complex turbulent flows of engineering interest has not yet received sufficient attention. In particular, there is a need to investigate its ability to compute turbulent flow involving separation and reattachment. Thus, in this work, large eddy simulation (LES) of turbulent flow over a backward facing step, a canonical benchmark problem which is characterized by complex flow features, is performed using the LBM. Multiple relaxation time formulation of the LBM is considered to maintain enhanced numerical stability in a locally refined, conservative multiblock gridding strategy, which allows efficient implementation. Dynamic procedure is used to adapt the proportionality constant in the Smagorinsky eddy viscosity subgrid scale model with the local features of the flow. With a suitable reconstruction procedure to represent inflow turbulence, computation is carried out for a Reynolds number of 5100 based on the maximum inlet velocity and step height and an expansion ratio of 1.2. It is found that various turbulence statistics, among other flow features, in both the recirculation and reattachment regions are in good agreement with direct numerical simulation and experimental data.

References

References
1.
Armaly
,
B.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schonung
,
B.
,
1983
, “
Experimental and Theoretical Investigation of a Backward-Facing Step
,”
J. Fluid Mech.
,
127
, pp.
473
496
.10.1017/S0022112083002839
2.
Kaiktsis
,
L.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
,
1991
, “
Onset of Three-Dimensionality, Equilibria, and Early Transition in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
231
, pp.
501
528
.10.1017/S0022112091003488
3.
Sagaut
,
P.
,
1998
,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
Berlin
.
4.
Friedrich
,
R.
, and
Arnal
,
M.
,
1990
, “
Analysing Turbulent Backward-Facing Step Flow With the Lowpass-Filtered Navier–Stokes Equations
,”
J. Wind Eng. Ind. Aerodyn.
,
35
, pp.
101
128
.10.1016/0167-6105(90)90212-U
5.
Akselvoll
,
K.
, and
Moin
,
P.
,
1993
, “
Large Eddy Simulation of a Backward Facing Step Flow
,”
Engineering Turbulence Modelling and Experiments 2
,
W.
Rodi
, and
F.
Martelli
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
289
309
.
6.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1997
, “
Direct Numerical Simulation of Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
330
, pp.
349
374
.10.1017/S0022112096003941
7.
Jovic
,
S.
, and
Driver
,
D. M.
,
1994
, “
Backward-Facing Step Measurement at Low Reynolds Number, Reh=5000
,”
NASA Technical Memorandum 108807
,
Washington, DC
.
8.
Jovic
,
S.
, and
Driver
,
D. M.
,
1995
, “
Reynolds Number Effects on the Skin Friction in Separated Flows Behind a Backward Facing Step
,”
Exp. Fluids
,
18
, pp.
464
467
.10.1007/BF00208471
9.
McNamara
,
G. R.
, and
Zanetti
,
G.
,
1988
, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
,
61
, pp.
2332
2335
.10.1103/PhysRevLett.61.2332
10.
He
,
X.
, and
Luo
,
L.-S.
,
1997
, “
A Priori Derivation of the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
55
, pp.
R6333
R6336
.10.1103/PhysRevE.55.R6333
11.
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Ann. Rev. Fluid Mech.
,
30
, pp.
329
364
.10.1146/annurev.fluid.30.1.329
12.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Clarendon
,
Oxford, UK
.
13.
Luo
,
L.-S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Lattice Boltzmann Models for Nonideal Gases
,”
Phys. Rev. E
,
62
, pp.
4982
4996
.10.1103/PhysRevE.62.4982
14.
He
,
X.
, and
Doolen
,
G.
,
2002
, “
Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows
,”
J. Stat. Phys.
,
107
, pp.
309
328
.10.1023/A:1014527108336
15.
Asinari
,
P.
,
2006
, “
Semi-Implicit-Linearized Multiple-Relaxation-Time Formulation of Lattice Boltzmann Schemes for Mixture Modeling
,”
Phys. Rev. E
,
73
, p.
056705
.10.1103/PhysRevE.73.056705
16.
Junk
,
M.
,
Klar
,
A.
, and
Luo
,
L.-S.
,
2005
, “
Asymptotic Analysis of the Lattice Boltzmann Equation
,”
J. Comput. Phys.
,
210
, pp.
676
704
.10.1016/j.jcp.2005.05.003
17.
Bhatnagar
,
P. L.
,
Gross
,
E.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
, pp.
511
525
.10.1103/PhysRev.94.511
18.
Qian
,
Y.
,
d'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
,
17
, pp.
479
484
.10.1209/0295-5075/17/6/001
19.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
,
1992
, “
Recovery of the Navier–Stokes Equations Using the Lattice-Gas Boltzmann Method
,”
Phys. Rev. A
,
45
, pp.
R5339
R5342
.10.1103/PhysRevA.45.R5339
20.
d‘
Humières
,
D.
,
1992
, “
Generalized Lattice Boltzmann Equations
,”
Rarefied Gas Dynamics: Theory and Simulations, Progress in Aeronautics and Astronautics
, Vol.
159
,
B. D.
Shigal
, and
D. P.
Weaver
, eds.,
AIAA
,
Washington, DC
, pp.
450
458
.
21.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
, pp.
6546
6562
.10.1103/PhysRevE.61.6546
22.
d‘
Humières
,
D.
,
Ginzburg
,
I.
,
Krafczyk
,
M.
,
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2002
, “
Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions
,”
Philos. Trans. R. Soc. London, Ser. A
,
360
, pp.
437
451
.10.1098/rsta.2001.0955
23.
Premnath
,
K. N.
, and
Abraham
,
J.
,
2007
, “
Three-Dimensional Multi-Relaxation Time (MRT) Lattice-Boltzmann Models for Multiphase Flow
,”
J. Comput. Phys.
,
224
, pp.
539
559
.10.1016/j.jcp.2006.10.023
24.
Pattison
,
M. J.
,
Premnath
,
K. N.
,
Morley
,
N. B.
, and
Abdou
,
M. A.
,
2008
, “
Progress in Lattice Boltzmann Methods for Magnetohydrodynamic Flows Relevant to Fusion Applications
,”
Fusion Eng. Des.
,
83
, pp.
557
572
.10.1016/j.fusengdes.2007.10.005
25.
Premnath
,
K. N.
,
Pattison
,
M. J.
, and
Banerjee
,
S.
,
2009
, “
Generalized Lattice Boltzmann Equation With Forcing Term for Computation of Wall Bounded Turbulent Flows
,”
Phys. Rev. E
,
79
, p.
026703
.10.1103/PhysRevE.79.026703
26.
Ginzbourg
,
I.
, and
Adler
,
P. M.
,
1994
, “
Boundary Flow Condition Analysis for the Three-Dimensional Lattice Boltzmann Model
,”
J. Phys. II
,
4
, pp.
191
214
.10.1051/jp2:1994123
27.
Ginzburg
,
I.
, and
d'Humieres
,
D.
,
2003
, “
Multireflection Boundary Conditions for Lattice Boltzmann Models
,”
Phys. Rev. E
,
68
, p.
066614
.10.1103/PhysRevE.68.066614
28.
Pan
,
C.
,
Luo
,
L.-S.
, and
Miller
,
C. T.
,
2006
, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
, pp.
898
909
.10.1016/j.compfluid.2005.03.008
29.
Luo
,
L.-S.
,
Liao
,
W.
,
Chen
,
X.
,
Peng
,
Y.
, and
Zhang
,
W.
,
2011
, “
Numerics of the Lattice Boltzmann Method: Effects of Collision Models on the Lattice Boltzmann Simulations
,”
Phys. Rev. E
,
83
, p.
056710
.10.1103/PhysRevE.83.056710
30.
Ladd
,
A. J. C.
, and
Verberg
,
R.
,
2001
, “
Lattice-Boltzmann Simulations of Particle-Fluid Suspensions
,”
J. Stat. Phys.
,
104
, pp.
1191
1251
.10.1023/A:1010414013942
31.
Succi
,
S.
,
Karlin
,
I.
, and
Chen
,
H.
,
2002
, “
Role of the H Theorem in Lattice Boltzmann Hydrodynamic Simulations
,”
Rev. Mod. Phys.
,
74
, pp.
1203
1220
.10.1103/RevModPhys.74.1203
32.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L.-S.
, and
Shyy
,
W.
,
2003
, “
Viscous Flow Computations With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
,
39
, pp.
329
367
.10.1016/S0376-0421(03)00003-4
33.
Nourgaliev
,
R. R.
,
Dinh
,
T. T.
,
Theofanous
,
T. G.
, and
Joseph
,
D.
,
2003
, “
The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications
,”
Int. J. Multiphase Flow
,
29
, pp.
117
169
.10.1016/S0301-9322(02)00108-8
34.
Premnath
,
K. N.
,
McCracken
,
M. E.
, and
Abraham
,
J.
,
2005
, “
A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays
,”
SAE
, Technical Paper No. 2005-01-0996.10.4271/2005-01-0996
35.
Aidun
,
C.
, and
Clausen
,
J. R.
,
2010
, “
Lattice-Boltzmann Method for Complex Flows
,”
Ann. Rev. Fluid Mech.
,
42
, pp.
439
472
.10.1146/annurev-fluid-121108-145519
36.
Luo
,
L.-S.
,
Krafczyk
,
M.
, and
Shyy
,
W.
,
2010
, “
Lattice Boltzmann Method for Computational Fluid Dynamics
,”
Encyclopedia of Aerospace Engineering
, pp.
651
660
.10.1002/9780470686652.eae064
37.
Ansumali
,
S.
,
Karlin
,
I.
, and
Succi
,
S.
,
2004
, “
Kinetic Theory of Turbulence Modelling: Smallness Parameter, Scaling and Microscopic Derivation of Smagorinsky Model
,”
Physica A
,
338
, pp.
379
394
.10.1016/j.physa.2004.02.013
38.
Chen
,
H.
,
Orszag
,
S.
,
Staroselsky
,
I.
, and
Succi
,
S.
,
2004
, “
Expanded Analogy Between Boltzmann Kinetic Theory of Fluids and Turbulence
,”
J. Fluid Mech.
,
519
, pp.
301
314
.10.1017/S0022112004001211
39.
Malaspinas
,
O.
, and
Sagaut
,
P.
,
2012
, “
Consistent Subgrid Scale Modelling for Lattice Boltzmann Methods
,”
J. Fluid Mech.
,
700
, pp.
514
542
.10.1017/jfm.2012.155
40.
Chen
,
H.
,
Kandasamy
,
S.
,
Orszag
,
S.
,
Shock
,
R.
,
Succi
,
S.
, and
Yakhot
,
V.
,
2003
, “
Extended Boltzmann Kinetic Equation for Turbulent Flows
,”
Science
301
, pp.
633
636
.10.1126/science.1085048
41.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
, pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
42.
Hou
,
S.
,
Sterling
,
J.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1996
, “
A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows
,”
Pattern Formation and Lattice Gas Automata
, A. T. Lawniczak, and R. Kapral, eds., American Mathematical Society, Providence, RI, pp.
151
166
.
43.
Krafczyk
,
M.
,
Tolke
,
J.
, and
Luo
,
L.-S.
,
2003
, “
Large-Eddy Simulations With a Multiple-Relaxation-Time LBE Model
,”
Int. J. Mod. Phys. B
,
17
, pp.
33
39
.10.1142/S0217979203017059
44.
Yu
,
H.
,
Luo
,
L.-S.
, and
Girimaji
,
S.
,
2006
, “
LES of Turbulent Square Jet Flow Using an MRT Lattice Boltzmann Model
,”
Comput. Fluids
,
35
, pp.
957
965
.10.1016/j.compfluid.2005.04.009
45.
van Driest
,
E.
,
1956
, “
On Turbulent Flow Near a Wall
,”
J. Aeronaut. Sci.
,
23
, pp.
1007
1011
.10.2514/8.3713
46.
Dong
,
Y.-H.
,
Sagaut
,
P.
, and
Marie
,
S.
,
2008
, “
Inertial Consistent Subgrid Model for Large-Eddy Simulation Based on the Lattice Boltzmann Method
,”
Phys. Fluids
,
20
, p.
035104
.10.1063/1.2842379
47.
Weickert
,
M.
,
Teike
,
G.
,
Schmidt
,
O.
, and
Sommerfeld
,
M.
,
2010
, “
Investigation of the LES WALE Turbulence Model Within the Lattice Boltzmann Framework
,”
Comput. Math. Appl.
,
59
, pp.
2200
2214
.10.1016/j.camwa.2009.08.060
48.
Stiebler
,
M.
,
Krafczyk
,
M.
,
Freudiger
,
S.
, and
Geier
,
M.
,
2011
, “
Lattice Boltzmann Large Eddy Simulation of Subcritical Flows Around a Sphere on Non-Uniform Grids
,”
Comput. Math. Appl.
,
61
, pp.
3475
3484
.10.1016/j.camwa.2011.03.063
49.
Freitas
,
R. K.
,
Henze
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2011
, “
Analysis of Lattice-Boltzmann Methods for Internal Flows
,”
Comput. Fluids
,
47
, pp.
115
121
.10.1016/j.compfluid.2011.02.019
50.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, pp.
1760
1765
.10.1063/1.857955
51.
Premnath
,
K. N.
,
Pattison
,
M. J.
, and
Banerjee
,
S.
,
2009
, “
Dynamic Subgrid Scale Modeling of Turbulent Flows Using Lattice-Boltzmann Method
,”
Physica A
,
388
, pp.
2640
2658
.10.1016/j.physa.2009.02.041
52.
Wu
,
H.
,
Wang
,
J.
, and
Tao
,
Z.
,
2011
, “
Passive Heat Transfer in a Turbulent Channel Flow Simulation Using Large Eddy Simulation Based on the Lattice Boltzmann Method Framework
,”
Int. J. Heat Fluid Flow
,
32
, pp.
1111
1119
.10.1016/j.ijheatfluidflow.2011.09.001
53.
Qian
,
Y. H.
,
Succi
,
S.
,
Massaioli
,
F.
, and
Orszag
,
S. A.
,
1996
, “
A Benchmark for Lattice BGK Model: Flow Over a Backward-Facing Step
,”
Pattern Formation and Lattice Gas Automata
, A. T. Lawniczak, and R. Kapral, eds., American Mathematical Society, Providence, RI, pp.
207
215
.
54.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1964
,
Mathematical Theory of Nonuniform Gases
,
Cambridge University
,
Cambridge, England
.
55.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
, pp.
633
635
.10.1063/1.858280
56.
He
,
X.
,
Luo
,
L.-S.
, and
Dembo
,
M.
,
1996
, “
Some Progress in the Lattice Boltzmann Method—Part 1: Non-Uniform Mesh Grids
,”
J. Comput. Phys.
,
129
, pp.
357
363
.10.1006/jcph.1996.0255
57.
Filippova
,
O.
, and
Hänel
,
D.
,
1998
, “
Grid Refinement for Lattice-BGK Models
,”
J. Comput. Phys.
,
147
, pp.
219
228
.10.1006/jcph.1998.6089
58.
Yu
,
D.
,
Mei
,
R.
, and
Shyy
,
W.
,
2002
, “
A Multi-Block Lattice Boltzmann Method for Viscous Fluid Flows
,”
Int. J. Numer. Methods Fluids
,
39
, pp.
99
120
.10.1002/fld.280
59.
Chen
,
H.
,
Filippova
,
O.
,
Hoch
,
J.
,
Molvig
,
K.
,
Shock
,
R.
,
Teixeira
,
C.
, and
Zhang
,
R.
,
2006
, “
Grid Refinement in Lattice Boltzmann Methods Based on Volumetric Formulation
,”
Physica A
,
362
, pp.
158
167
.10.1016/j.physa.2005.09.036
60.
Rohde
,
M.
,
Kandhai
,
D.
,
Derksen
,
J. J.
, and
van den Akker
,
H. E. A.
,
2006
, “
A Generic, Mass Conservative Local Grid Refinement Technique for Lattice-Boltzmann Schemes
,”
Int. J. Numer. Methods Fluids
,
51
, pp.
439
468
.10.1002/fld.1140
61.
Dupuis
,
A.
, and
Chopard
,
B.
,
2003
, “
Theory and Applications of an Alternative Lattice Boltzmann Grid Refinement Algorithm
,”
Phys. Rev. E
,
67
, p.
066707
.10.1103/PhysRevE.67.066707
62.
Rohde
,
M.
,
Derksen
,
J. J.
, and
van den Akker
,
H. E. A.
,
2008
, “
An Applicability Study of Advanced Lattice-Boltzmann Techniques for Moving, No-Slip Boundaries and Local Grid Refinement
,”
Comput. Fluids
,
37
, pp.
1238
1252
.10.1016/j.compfluid.2007.10.012
63.
Spalart
,
P. R.
,
1987
, “
Direct Simulation of a Turbulent Boundary Layer Up to Rθ=1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.10.1017/S0022112088000345
64.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation—Part 1: Theoretical Foundation
,”
J. Fluid Mech.
,
271
, pp.
285
309
.10.1017/S0022112094001771
65.
Dubois
,
F.
,
Lallemand
,
P.
, and
Tekitek
,
M.
,
2010
, “
On a Superconvergent Lattice Boltzmann Boundary Scheme
,”
Comput. Math. Appl.
,
59
, pp.
2141
2149
.10.1016/j.camwa.2009.08.055
66.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University
,
Cambridge, England
.
67.
Gullbrand
,
J.
, and
Chow
,
F. K.
,
2003
, “
The Effect of Numerical Errors and Turbulence Models in Large-Eddy Simulations of Channel Flow, With and Without Explicit Filtering
,”
J. Fluid Mech.
,
495
, pp.
323
341
.10.1017/S0022112003006268
68.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
,
1992
, “
Simulation of Spatially Evolving Turbulence and the Applicability of Taylor's Hypothesis in Compressible Flow
,”
Phys. Fluids
,
4
, pp.
1521
1530
.10.1063/1.858425
69.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarty
,
S.
,
2004
, “
Interfacing Statistical Turbulence Closures With Large-Eddy Simulation
,”
AIAA J.
,
42
, pp.
485
492
.10.2514/1.3496
70.
Keating
,
A.
,
Piomelli
,
U.
,
Balaras
,
E.
, and
Kaltenbach
,
H.-J.
,
2004
, “
A Priori and a Posteriori Tests of Inflow Conditions for Large-Eddy Simulation
,”
Phys. Fluids
,
16
, pp.
4696
4712
.10.1063/1.1811672
71.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Inflow Data for Spatially Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
, pp.
233
258
.10.1006/jcph.1998.5882
72.
Spille
–Kohoff
,
A.
, and
Kaltenbach
,
H.-J.
,
2001
, “
Generation of Turbulent Inflow Data With a Prescribed Shear-Stress Profile
,”
3rd AFOSR International Conference on DNS/LES
,
C.
Liu
,
L.
Sakell
, and
T.
Beutner
, eds.,
Greyden Press
,
Columbus, OH
.
73.
Terracol
,
M.
,
2006
, “
A Zonal RANS/LES Approach for Noise Sources Prediction
,”
Flow, Turbul. Combust.
,
77
, pp.
161
184
.10.1007/s10494-006-9042-6
74.
Sandham
,
N. D.
,
Yao
,
Y. F.
, and
Lawal
,
A. A.
,
2003
, “
Large-Eddy Simulation of Transonic Turbulent Flow Over a Bump
,”
Int. J. Heat Fluid Flow
,
24
, pp.
584
595
.10.1016/S0142-727X(03)00052-3
75.
Liu
,
M.
,
Chen
,
X.-P.
, and
Premnath
,
K. N.
,
2012
, “
Comparative Study of the Large Eddy Simulations With the Lattice Boltzmann Method Using the Wall-Adapting Local Eddy-Viscosity and Vreman Subgrid Scale Models
,”
Chinese Phys. Lett.
,
29
, p.
104706
.10.1088/0256-307X/29/10/104706
76.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
, pp.
183
200
.10.1023/A:1009995426001
You do not currently have access to this content.