Double-layered microcapsules, which usually consist of a core (polymeric) matrix surrounded by a (polymeric) shell, have been used in many industrial and scientific applications, such as microencapsulation of drugs and living cells. Concentric compound nozzle-based jetting has been favored due to its efficiency and precise control of the core-shell compound structure. Thus far, little is known about the underlying formation mechanism of double-layered microcapsules in compound nozzle jetting. This study aims to understand the formability of double-layered microcapsules in compound nozzle jetting by combining a theoretical analysis and numerical simulations. A linear temporal instability analysis is used to define the perturbation growth rates of stretching and squeezing modes and a growth ratio as a function of the wave number, and a computational fluid dynamics (CFD) method is implemented to model the microcapsule formation process in order to determine the good microcapsule forming range based on the growth ratio curve. Using a pseudobisection method, the lower and upper bounds of the good formability range have been determined for a given materials-nozzle system. The proposed formability prediction methodology has been implemented to model a water-poly (lactide-co-glycolide) (PLGA)-air compound jetting system.

References

References
1.
Lee
,
S. J.
, and
Rosenberg
,
M.
,
2000
, “
Whey Protein-Based Microcapsules Prepared by Double Emulsification and Heat Gelation
,”
Lebensm.-Wiss. u.-Technol.
,
33
, pp.
80
88
.10.1006/fstl.1999.0619
2.
Langer
,
R.
,
1998
, “
Drug Delivery and Targeting
,”
Nature
,
392
(Suppl. 6679), pp.
5
10
.
3.
Loscertales
,
I. G.
,
Barrero
,
A.
,
Guerrero
,
I.
,
Cortijo
,
R.
,
Marquez
,
M.
, and
Gañán-Calvo
,
A. M.
,
2002
, “
Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets
,”
Science
,
295
, pp.
1695
1698
.10.1126/science.1067595
4.
López-Herrera
,
J. M.
,
Barrero
,
A.
,
López
,
A.
,
Loscertales
,
I. G.
,
Márquez
,
M.
,
2003
, “
Coaxial Jets Generated From Electrified Taylor Cones. Scaling Laws
,”
Aerosol Sci.
,
34
, pp.
535
552
.10.1016/S0021-8502(03)00021-1
5.
Utada
,
A. S.
,
Lorenceau
,
E.
,
Link
,
D. R.
,
Kaplan
,
P. D.
,
Stone
,
H. A.
, and
Weitz
,
D. A.
,
2005
, “
Monodisperse Double Emulsions Generated From a Microcapillary Device
,”
Science
,
308
, pp.
537
541
.10.1126/science.1109164
6.
Bocanegra
,
R.
,
Sampedro
,
J. L.
,
Gañán-Calvo
,
A.
, and
Marquez
,
M.
,
2005
, “
Monodisperse Structured Multi-Vesicle Microencapsulation Using Flow-Focusing and Controlled Disturbance
,”
J. Microencapsulation
,
22
(
7
), pp.
745
759
.10.1080/02652040500273639
7.
Berkland
,
C.
,
Pollauf
,
E.
,
Varde
,
N.
,
Pack
,
D. W.
, and
Kim
,
K.
,
2007
, “
Monodisperse Liquid-Filled Biodegradable Microcapsules
,”
Pharm. Res.
,
24
(
5
), pp.
1007
1013
.10.1007/s11095-006-9197-9
8.
Yeo
,
Y.
,
Chen
,
A. U.
,
Basaran
,
O. A.
, and
Park
,
K.
,
2004
, “
Solvent Exchange Method: A Novel Microencapsulation Technique Using Dual Microdispensers
,”
Pharm. Res.
,
21
, pp.
1419
1427
.10.1023/B:PHAM.0000036916.96307.d8
9.
Jain
,
R. A.
,
2000
, “
The Manufacturing Techniques of Various Drug Loaded Biodegradable Poly(lactide-co-glycolide) (PLGA) Devices
,”
Biomaterials
,
21
, pp.
2475
2490
.10.1016/S0142-9612(00)00115-0
10.
Berkland
,
C.
,
Pollauf
,
E.
,
Pack
,
D. W.
, and
Kim
,
K.
,
2004
, “
Uniform Double-Walled Polymer Microspheres of Controllable Shell Thickness
,”
J. Controlled Release
,
96
(
1
), pp.
101
111
.10.1016/j.jconrel.2004.01.018
11.
Herran
,
C. L.
,
Wang
,
W.
,
Huang
,
Y.
,
Mironov
,
V.
, and
Markwald
,
R.
,
2010
, “
Parametric Study of Acoustic Excitation-Based Glycerol-Water Microsphere Fabrication in Single Nozzle Jetting
,”
ASME J. Manuf. Sci. Eng.
,
132
(5), p.
051203
.10.1115/1.4002187
12.
Scheele
,
G. F.
, and
Meister
,
B. J.
,
1968
, “
Drop Formation at Low Velocities in Liquid-Liquid Systems: Part 1. Prediction of Drop Volume
,”
AIChE J.
,
14
, pp.
9
15
.10.1002/aic.690140105
13.
Utada
,
A. S.
,
Fernandez-Nieves
,
A.
,
Stone
,
H. A.
, and
Weitz
,
D. A.
,
2007
, “
Dripping to Jetting Transitions in Coflowing Liquid Streams
,”
Phys. Rev. Lett.
,
99
, p.
094502
.10.1103/PhysRevLett.99.094502
14.
Chu
,
L. Y.
,
Utada
,
A. S.
,
Shah
,
R. K.
,
Kim
,
J. W.
, and
Weitz
,
D. A.
,
2007
, “
Controllable Monodisperse Multiple Emulsions
,”
Angew. Chem. Int. Ed.
,
46
, pp.
8970
8974
.10.1002/anie.200701358
15.
Lee
,
S. Y.
,
Snider
,
C.
,
Park
,
K.
, and
Robinson
,
J. P.
,
2007
, “
Compound Jet Instability in a Microchannel for Mononuclear Compound Drop Formation
,”
J. Micromech. Microeng.
,
17
, pp.
1558
1566
.10.1088/0960-1317/17/8/019
16.
Snider
,
C.
,
Lee
,
S. Y.
,
Yeo
,
Y.
,
Grégori
,
G. J.
,
Robinson
,
J. P.
, and
Park
,
K.
,
2008
, “
Microenvironment-Controlled Encapsulation (MiCE) Process: Effects of PLGA Concentration, Flow Rate, and Collection Method on Microcapsule Size and Morphology
,”
Pharm Res.
,
25
(
1
), pp.
5
15
.10.1007/s11095-007-9456-4
17.
Chang
,
F. C.
, and
Su
,
Y. C.
,
2008
, “
Controlled Double Emulsification Utilizing 3D PDMS Microchannels
,”
J. Micromech. Microeng.
,
18
, p.
065018
.10.1088/0960-1317/18/6/065018
18.
Tomotika
,
S.
,
1935
, “
On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid
,”
Proc. R. Soc. London, Ser. A, Math. Phys. Sci.
,
150
, pp.
322
337
.10.1098/rspa.1935.0104
19.
Sanz
,
A.
, and
Meseguer
,
J.
,
1985
, “
One-Dimensional Linear Analysis of the Compound Jet
,”
J. Fluid Mech.
,
159
, pp.
55
68
.10.1017/S0022112085003093
20.
Shkadov
,
V. Y.
, and
Sisoev
,
G. M.
,
1996
, “
Instability of a Two-Layer Capillary Jet
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
363
377
.10.1016/0301-9322(95)00073-9
21.
Chauhan
,
A.
,
Maldarelli
,
C.
,
Papageorgiou
,
D. T.
, and
Rumschitzki
,
D. S.
,
2000
, “
Temporal Instability of Compound Threads and Jets
,”
J. Fluid Mech.
,
420
, pp.
1
25
.10.1017/S0022112000001282
22.
Craster
,
R. V.
,
Matar
,
O. K.
, and
Papageorgiou
,
D. T.
,
2005
, “
On Compound Liquid Threads With Large Viscosity Contrasts
,”
J. Fluid Mech.
,
533
, pp.
95
124
.10.1017/S0022112005004064
23.
Tchavdarov
,
B.
,
Minev
,
P. D.
, and
Radev
,
S.
,
1994
, “
Numerical Analysis of Compound Jet Disintegration
,”
Comput. Methods Appl. Mech. Eng.
,
118
, pp.
121
132
.10.1016/0045-7825(94)90108-2
24.
Suryo
,
R.
,
Doshi
,
P.
, and
Basaran
,
O. A.
,
2006
, “
Nonlinear Dynamics and Breakup of Compound Jets
,”
Phys. Fluids
,
18
, p.
082107
.10.1063/1.2245377
25.
Zhou
,
C.
,
Yue
,
P.
, and
Feng
,
J. J.
,
2006
, “
Formation of Simple and Compound Drops in Microfluidic Devices
,”
Phys. Fluids
,
18
, p.
092105
.10.1063/1.2353116
26.
Chauhan
,
A.
,
Maldarelli
,
C.
,
Papageorgiou
,
D. T.
, and
Rumschitzki
,
D. S.
,
2006
, “
The Absolute Instability of an Inviscid Compound Jet
,”
J. Fluid Mech.
,
549
, pp.
81
98
.10.1017/S0022112005007056
27.
Hertz
,
C. H.
, and
Hermanrud
,
B.
,
1983
, “
A Liquid Compound Jet
,”
J. Fluid Mech.
,
131
, pp.
271
287
.10.1017/S0022112083001329
You do not currently have access to this content.