The problem of magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr 1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Nonsimilar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, ξ. Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter ξ. A favorable agreement is found between the results for small, large and all values of ξ. Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity, and temperature.

References

References
1.
Hartmann
,
J.
,
1937
, “
Hg-Dynamics I: Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field,
K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
,
15
, pp.
1
28
.
2.
Singh
,
R. K.
, and
Cowling
,
T. G.
,
1963
, “
Thermal Convection in Magnetohydrodynamics
,”
Q. J. Mech. Appl. Math.
,
16
, pp.
1
15
.10.1093/qjmam/16.1.1
3.
D'sa
,
E. R.
,
1967
, “
Magnetohydrodynamic Free Convection in a Strong Cross-Field
,”
Z. Angew. Math. Phys.
,
18
, pp.
106
115
.10.1007/BF01593898
4.
Sears
,
W. R.
,
1966
, “
The Boundary Layer in Crossed-Fields MHD
,”
J. Fluid Mech.
,
25
, pp.
229
240
.10.1017/S0022112066001629
5.
Riley
,
N.
,
1964
, “
Magnetohydrodynamic Free Convection
,”
J. Fluid Mech.
,
18
, pp.
577
586
.10.1017/S0022112064000416
6.
Kuiken
,
H. K.
,
1970
, “
Magnetohydrodynamic Free Convection in a Strong Cross Field
,”
J. Fluid Mech.
,
40
, pp.
21
38
.10.1017/S0022112070000022
7.
Wilks
,
G.
,
1976
, “
Mangnetohydrodynamic Free Convection About a Semi-Infinite Vertical Plate in a Strong Cross Field
,”
ZAMP
,
27
, pp.
621
631
.10.1007/BF01591174
8.
Hunt
,
R.
, and
Wilks
,
G.
,
1981
, “
Low Prandtl Number Magnetohydrodynamic Natural Convection in a Strong Cross Field
,”
Numer. Heat Transfer
,
4
, pp.
303
316
.10.1080/01495728108961794
9.
Wilks
,
G.
, and
Hunt
,
R.
,
1984
, “
Magnetohydrodynamic Free Convection Flow About a Semi-Infinite Plate at Whose Surface the Heat Flux is Uniform
,”
ZAMP
,
35
, pp.
34
49
.10.1007/BF00945174
10.
Siddiqa
,
S.
,
Hossain
,
M. A.
, and
Pop
,
I.
,
2012
, “
Conjugate Thermal and Mass Diffusion Effect on Natural Convection Flow in Presence of Strong Cross Magnetic Field
,”
Int. J. Heat Mass Transfer
,
55
, pp.
5120
5132
.10.1016/j.ijheatmasstransfer.2012.05.013
11.
Siddiqa
,
S.
,
Hossain
,
M. A.
, and
Saha
,
S. C.
,
2012
, “
Double Diffusive Magneto-Convection Fluid Flow in a Strong Cross Magnetic Field With Uniform Surface Heat and Mass Flux
,”
ASME J. Heat Trans.
,
134
(11), p. 114506.10.1115/1.4007130
12.
Hossain
,
M. A.
,
Kutubuddin
,
M.
, and
Pop
,
I.
,
1999
, “
Effect of Conduction-Radiation Interaction on the Mixed Convection Flow From a Horizaontal Cylinder
,”
Heat Mass Transfer
,
35
, pp.
307
314
.10.1007/s002310050329
13.
Hossain
,
M. A.
,
Anghel
,
M.
, and
Pop
,
I.
,
2002
, “
Thermal Radiation Effects on Free Convection Over a Rotating Axisymmetric Body With Application to a Rotating Hemisphere
,”
Arch. Mech.
,
54
, pp.
55
74
. Available at http://dezoo.ippt.gov.pl/volume-54-2002/issue-1/thermal-radiation-effects-on-free-convection-over-a-rotating-axisymmetric-body-with-application-to-a-rotating-hemisphere/
14.
Hossain
,
M. A.
, and
Rees
,
D. A. S.
,
1998
, “
Radiation-Conduction Interaction on Mixed Convection Flow Along a Slender Vertical Cylinder
,”
J. Thermophys. Heat Transfer
,
12
, pp.
611
614
.10.2514/2.6387
15.
Molla
,
M. M.
, and
Hossain
,
M. A.
,
2007
, “
Radiation Effect on Mixed Convection Laminar Flow Along a Vertical Wavy Surface
,”
Int. J. Therm. Sci.
,
46
, pp.
926
935
.10.1016/j.ijthermalsci.2006.10.010
16.
Siddiqa
,
S.
,
Asghar
,
S.
, and
Hossain
,
M. A.
,
2011
, “
Radiation Effects on Natural Convection Flow Over an Inclined Flat Plate With Temperature-Dependent Viscosity
,”
J. Mech. Eng. Sci.
,
225
, pp.
407
419
.10.1177/2041305X10394054
17.
Keller
,
H. B.
,
1978
, “
Numerical Methods in Boundary Layer Theory
,”
Annu. Rev. Fluid Mech.
,
10
, pp.
417
433
.10.1146/annurev.fl.10.010178.002221
18.
Hammitt
,
F. G.
, 1960, “
Liquid Metal Cavitation-Problems and Desired Research
,”
The University of Michigan
, Ann Arbor, MI, Report No. UMR1750.
19.
Ozisik
,
M. N.
,
1973
,
Thermal Radiation Transfer and Interactions With Conduction and Convection
,
Wiley
,
New York
.
20.
Keller
,
H. B.
, and
Cebeci
,
T.
,
1971
, “
Accurate Numerical Methods for Boundary Layer Flows, I. Two-Dimensional Laminar Flows, Lecture Notes in Physics
,”
Proceedings of 2nd International Conference on Numerical Methods in Fluid Dynamics
,
Springer-Verlag, Berlin
.
21.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer
,
New York
.
22.
Siddiqa
,
S.
,
Asghar
,
S.
, and
Hossain
,
M. A.
,
2010
, “
Natural Convection Flow Over an Inclined Flat Plate With Internal Heat Generation and Variable Viscosity
,”
Math Comput. Modell.
,
52
, pp.
1739
1751
.10.1016/j.mcm.2010.07.001
23.
Molla
,
M. M.
,
Hossain
,
M. A.
, and
Gorla
,
R. S. R.
,
2009
, “
Radiation Effect on Natural Convection Boundary Layer Flow Over a Vertical Wavy Frustum of a Cone
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
, pp.
1605
1614
.10.1243/09544062JMES1323
24.
Butcher
,
J. C.
,
1964
, “
Implicit Runge-Kutta Process
,”
Math Comput.
,
18
, pp.
50
55
.10.1090/S0025-5718-1964-0159424-9
25.
Nachtsheim
,
P. R.
, and
Swiegert
,
P.
,
1965
, “
Satisfaction of Asymptotic Boundary Conditions in Numerical Solutions of System of Nonlinear Equations of the Boundary Layer Type
,” Report No. NASA TND-3004.
You do not currently have access to this content.