A series of experiments has been conducted to identify the effects of both fluid viscosity and wear-rings gap on the performance of a low specific speed industrial centrifugal pump of type 65Y60 for transporting viscous oils by the author group. Unfortunately, the experimental results remained unexplained on a fluid dynamics base. To remedy this problem, a highly viscous oil flow model and computational method in the side chambers in that pump were proposed based on the existing theoretical and experimental results. The flow coupling between the chambers and the gaps of the wear-rings and/or the balance holes was realized. The model was validated by making use of the existing experiment data in the chamber between a rotating disk and the walls of a stationary cylindrical container. Then the flow model was applied into the two side chambers in that pump when the wear-rings clearances and liquid viscosity were changed. The results demonstrated that the flow model is sensitive to wear-rings gap, liquid viscosity, the roughness of the wet walls of the chambers, and leakage flow rate. For this pump, an enlarged clearance can improve the mechanical efficiency, but the increment in the efficiency is unable to compensate for the considerable drop in the volumetric efficiency, causing the gross efficiency not be improved, especially at a high viscosity.

References

References
1.
Schultz-Grunow
,
F.
,
1935
, “
Der Reibungswiderstand Rotierender Scheiben in Gehanusen
,”
ZAMM
,
15
(
4
), pp.
191
204
.10.1002/zamm.19350150403
2.
Ippen
,
A. T.
,
1946
, “
The Influence of Viscosity on Centrifugal Pump Performance
,”
ASME Trans.
,
68
(
8
), pp.
823
848
.
3.
Iwagaki
,
Y.
, and
Fudimoto
,
B.
,
1947
, “
On the Frictional Resistance of Rotating Disc
,”
JSME
,
50
(
349
), pp.
44
49
. Available at http://ci.nii.ac.jp/naid/110002448774
4.
Pantell
,
K.
,
1949
, “
Versuche uber Scheibenreibung
,”
Forsch. Ingenieurwes.
,
16
(
4
), pp.
97
108
.10.1007/BF02592334
5.
Hudimoto
,
B.
, and
Hirose
,
K.
,
1951
, “
Frictional Resistance of a Rotating Disc
,”
Trans. JSME
,
17
(
56
), pp.
92
95
.10.1299/kikai1938.17.92
6.
Hirose
,
K.
,
1952
, “
Experiment on the Frictional Resistance of Rotating Disc
,”
Trans. JSME
,
18
(
69
), pp.
127
129
.10.1299/kikai1938.18.69_127
7.
Miyadzu
,
A.
, and
Toyokura
,
T.
,
1952
, “
Fluid Friction on the Circular Disc Rotating in the Cylindrical Vessel
,”
Trans. JSME
,
18
(
73
), pp.
33
40
.10.1299/kikai1938.18.73_33
8.
Watabe
,
K.
,
1958
, “
On Fluid Friction of Rotational Rough Disc in Rough Vessel
,”
Bull. JSME
,
1
(
1
), pp.
69
74
.10.1299/jsme1958.1.69
9.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
10.
Nece
,
R. E.
, and
Daily
,
J. W.
,
1960
, “
Roughness Effects on Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
3
), pp.
553
560
.10.1115/1.3662656
11.
Watabe
,
K.
,
1961
, “
Experiments on Fluid Friction of Rotating Disc With Blades
,”
Trans. JSME
,
27
(
177
), pp.
543
552
.10.1299/kikai1938.27.543
12.
Watabe
,
K.
,
1965
, “
Effects of Clearances and Grooves on Fluid Friction of Rotating Discs
,”
Bull. JSME
,
8
(
29
), pp.
55
63
.10.1299/jsme1958.8.55
13.
Dorfman
,
L. A.
,
1963
,
Hydrodynamic Resistance and the Heat Loss of Rotating Solids
,
Oliver & Boyd Ltd.
,
London, UK
, Chap. 6.
14.
Bayley
,
F. J.
, and
Conway
,
L.
,
1964
, “
Fluid Friction and Leakage Between a Stationary and Rotating Disc
,”
J. Mech. Eng. Sci.
,
6
(
2
), pp.
164
172
.10.1243/JMES_JOUR_1964_006_026_02
15.
Watabe
,
K.
,
1965
, “
On Fluid Resistance of Enclosed Rotating Rough Discs
,”
Bull. JSME
,
8
(
32
), pp.
609
619
.10.1299/jsme1958.8.609
16.
Kurokawa
,
J.
, and
Toyokura
,
T.
,
1972
, “
Study on Axial Thrust of Radial Flow Turbomachinery
,”
Proceedings of the 2nd International JSME Symposium Fluid Machinery and Fluidics
,
Tokyo, Japan
, pp.
31
40
.
17.
Pao
,
H. P.
,
1972
, “
Numerical Solution of the Navier-Stokes Equations for Flows in the Disk-Cylinder System
,”
Phys. Fluids
,
15
(
1
), pp.
4
11
.10.1063/1.1693752
18.
Kurokawa
,
J.
, and
Toyokura
,
T.
,
1976
, “
Axial Thrust, Disk Friction Torque and Leakage Loss of Radial Flow Turbomachinery
,”
Proceedings of the Pump and Turbines Conference
,
Glasgow, UK
, pp.
1
14
.
19.
Kurokawa
,
J.
, and
Toyokura
,
T.
,
1976
, “
On Leakage Loss and Disk Friction Torque of Radial Flow Turbomachinery
,”
J. Turbomach.
,
4
(
5
), pp.
1
9
. Available at http://hdl.handle.net/10131
20.
Senoo
,
Y.
, and
Hayami
,
H.
,
1976
, “
An Analysis on the Flow in a Casing Induced by a Rotating Disk Using a Four-Layer Flow Model
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
192
198
.10.1115/1.3448256
21.
Yamada
,
Y.
,
Ito
,
M.
, and
Sinoda
,
Y.
,
1977
, “
The Frictional Resistance of Enclosed Rough Rotating Disks With Throughflow
,”
Trans. JSME, Ser. II
,
43
(
376
), pp.
4538
4549
.10.1299/kikai1938.43.4538
22.
Yamada
,
Y.
,
Ito
,
M.
,
Hamada
,
M.
, and
Tatekawa
,
S.
,
1978
, “
Frictional Resistance of Enclosed Rotating Disk With Through Flow
,”
Trans. JSME, Ser. II
,
44
(
383
), pp.
2332
2342
.10.1299/kikai1938.44.2332
23.
Kurokawa
,
J.
,
Toyokura
,
T.
,
Shinjo
,
M.
, and
Matsuo
,
K.
,
1978
, “
Roughness Effects on the Flow Along Enclosed Rotating Disk
,”
Bull. JSME
,
21
(
162
), pp.
1725
1732
.10.1299/jsme1958.21.1725
24.
Itoh
,
M.
, and
Mitsuda
,
S.
,
1984
, “
A Numerical Study of the Flow Around Rotating Disk in a Casing
,”
Trans. JSME, Ser. B
,
50
(
454
), pp.
1506
1515
.10.1299/kikaib.50.1506
25.
Kurokawa
,
J.
, and
Sakuma
,
M.
,
1988
, “
Flow in a Narrow Gap Along an Enclosed Rotating Disk With Through-Flow
,”
JSME Int. J., Ser. II
,
31
(
2
), pp.
243
251
. Available at http://ci.nii.ac.jp/naid/110002494168/en
26.
Piesche
,
M.
,
1989
, “
Investigation of the Flow in the Impeller-Side Space of Rotary Pumps With Superimposed Throughflow for the Determination of Axial Force and Frictional Torque
,”
Acta Mech.
,
78
(
3–4
), pp.
175
189
.10.1007/BF01179215
27.
Itoh
,
M.
,
Yamada
,
Y.
,
Imao
,
S.
, and
Gonda
,
M.
,
1992
, “
Experiments on Turbulent Flow Due to an Enclosed Rotating Disk
,”
Exp. Therm. Fluid Sci.
,
5
(
3
), pp.
359
368
.10.1016/0894-1777(92)90081-F
28.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1994
, “
Experimental Investigation of Enclosed Rotor-Stator Disk Flows
,”
Exp. Therm. Fluid Sci.
,
9
(
4
), pp.
445
455
.10.1016/0894-1777(94)90022-1
29.
Baibikov
,
A. S.
,
1998
, “
Method of Calculating of a Turbulent Flow in an Axial Gap With a Variable Radius Between a Rotating Disk and an Axisymmetric Casing
,”
J. Eng. Phys. Thermophys.
,
71
(
6
), pp.
1107
1115
.10.1007/BF02681464
30.
Debuchy
,
R.
,
Dyment
,
A.
,
Muhe
,
H.
, and
Micheau
,
P.
,
1998
, “
Radial Inflow Between a Rotating and a Stationary Disc
,”
Eur. J. Mech. B/Fluids
,
17
(
6
), pp.
791
810
.10.1016/S0997-7546(99)80014-4
31.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Le Gal
,
P.
,
2005
, “
Turbulent Rotating Disk Flow With Inward Throughflow
,”
J. Fluid Mech.
,
552
, pp.
253
262
.10.1017/S0022112004002046
32.
Debuchy
,
R.
,
Gatta
,
S. D.
,
D'Haudt
,
E.
,
Bois
,
G.
, and
Martelli
,
F.
,
2007
, “
Influence of External Geometrical Modifications on the Flow Behavior of a Rotor-Stator System: Numerical and Experimental Investigation
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
6
), pp.
857
864
.10.1243/09576509JPE461
33.
Debuchy
,
R.
,
Nour
,
F. A.
, and
Bois
,
G.
,
2008
, “
On the Flow Behavior in Rotor-Stator System With Superposed Flow
,”
Int. J. Rotating Mach.
,
2008
, p.
719510
.10.1155/2008/719510
34.
Debuchy
,
R.
,
Nour
,
F. A.
, and
Bois
,
G.
,
2010
, “
An Analytical Modeling of the Central Core Flow in a Rotor-Stator System With Several Preswirl Conditions
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061102
.10.1115/1.4001576
35.
Launder
,
B.
,
Poncet
,
S.
, and
Serre
,
E.
,
2010
, “
Laminar, Transitional, and Turbulent Flows in Rotor-Stator Cavities
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
229
248
.10.1146/annurev-fluid-121108-145514
36.
Lomakin
,
A. A.
,
1940
, “
Axial Pressure in Centrifugal Pumps Taking Into Account the Influence of Gap Size in the Packing Rings
,”
Sov. Boiler Turbine Constr.
,
12
, pp.
431
437
.
37.
Iino
,
T.
,
Sato
,
H.
, and
Miyashiro
,
H.
,
1980
, “
Hydraulic Axial Thrust in Multistage Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
64
69
.10.1115/1.3240626
38.
Shnepp
,
V. B.
,
1982
, “
Disk Losses in the Centrifugal Stages With Allowance for Leakage in Packings
,”
Chem. Petrol. Eng.
,
18
(
4
), pp.
159
162
.10.1007/BF01229583
39.
Shnepp
,
V. B.
,
1983
, “
Computation of Axial Forces in the Centrifugal Stage With Allowance for Leakage Through Seals
,”
Chem. Petrol. Eng.
,
19
(
8
), pp.
318
323
.10.1007/BF01179241
40.
Bondarenko
,
G. A.
,
Ganelin
,
B. Y.
, and
Marufenko
,
T. M.
,
1992
, “
Method of Calculating Axial Forces in a Centrifugal Compressor Based on a Refined Model of Flow
,”
Chem. Petrol. Eng.
,
28
(
2
), pp.
81
85
.10.1007/BF01148826
41.
Kurokawa
,
J.
,
Kamijo
,
K.
, and
Shimura
,
T.
,
1994
, “
Axial Thrust Behavior in LOX-Pump of Rocket Engine
,”
J. Propul. Power
,
10
(
2
), pp.
244
250
.10.2514/3.23735
42.
Evgenev
,
S. S.
,
1995
, “
Relief of Axial Forces With the Aim of Improving the Reliability of Turbomachinery
,”
Chem. Petrol. Eng.
,
31
(
11
), pp.
596
603
.10.1007/BF01155743
43.
Matsumoto
,
K.
,
Kurokawa
,
J.
,
Matsui
,
J.
, and
Imamura
,
H.
,
1999
, “
Performance of Improvement and Peculiar of Disk Friction and Leakage in Very Low Specific-Speed Pump
,”
Trans. JSME
, Ser. B,
65
(
640
), pp.
4027
4032
.10.1299/kikaib.65.4027
44.
Gulich
,
J. F.
,
1999
, “
Pumping Highly Viscous Fluids With Centrifugal Pumps—Part 1
,”
World Pumps
,
1999
(
395
), pp.
30
34
.10.1016/S0262-1762(00)87528-8
45.
Gulich
,
J. F.
,
1999
, “
Pumping Highly Viscous Fluids With Centrifugal Pumps—Part 2
,”
World Pumps
,
1999
(
396
), pp.
39
42
.10.1016/S0262-1762(00)87492-1
46.
Bahm
,
F. U.
,
2000
, “
Das Axialschubverhalten von Einstufigen Kreiselpumpen mit Spiralgehause
,” Dr.-Ing. thesis,
University of Hannover
,
Hannover, Germany
.
47.
Gantar
,
M.
,
Florjancic
,
D.
, and
Sirok
,
B.
,
2002
, “
Hydraulic Axial Thrust in Multistage Centrifugal Pumps-Origins and Solutions
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
336
341
.10.1115/1.1454110
48.
Gulich
,
J. F.
,
2003
, “
Disk Friction Losses of Closed Turbomachine Impellers
,”
Forsch. Ingenieurwes.
,
68
(
2
), pp.
87
95
.10.1007/s10010-003-0111-x
49.
Gulich
,
J. F.
,
2003
, “
Effect of Reynolds Number and Surface Roughness on the Efficiency of Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
670
678
.10.1115/1.1593711
50.
Yan
,
J. F.
,
Chen
,
W.
, and
Pu
,
G. R.
,
2007
, “
The Effect of Flow in the Impeller Shroud on the Leakage Rate in a Centrifugal Pump
,”
J. Rocket Propul.
,
33
(
3
), pp.
20
25
.10.3969/j.issn.1672-9374.2007.03.004
51.
Wang
,
X. Y.
,
Wang
,
C. X.
, and
Li
,
Y. B.
,
2009
, “
Numerical Study of Flow Characteristics in the Impeller Side Chamber of Centrifugal Pump
,”
Trans. Chin. Soc. Agric. Mach.
,
40
(
4
), pp.
86
90
.
52.
Mou
,
J. G.
,
Li
,
S.
,
Zheng
,
S. H.
,
Jin
,
J. B.
,
Su
,
M. Y.
, and
Hao
,
Y. P.
,
2010
, “
Influence of Interstage Leakage on the Axial Force of the Multistage Centrifugal Pump
,”
Trans. Chin. Soc. Agric. Mach.
,
41
(
7
), pp.
40
44
.
53.
Will
,
B. C.
,
2011
, “
Theoretical, Numerical and Experimental Investigation of the Flow in Rotor-Stator Cavities With Application to a Centrifugal Pump
,” Ph.D. thesis,
University of Duisburg-Essen
,
Essen, Germany
.
54.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
, Chap. 21.
55.
Granville
,
P. S.
,
1951
, “
A Method for the Calculation of the Turbulent Boundary Layer in a Pressure Gradient
,” Defense Documentation Center, Cameron Station, Alexandria, VA, Report No. AD 224 936.
56.
Churchill
,
S. W.
,
1988
,
The Practical Use of Theory-Viscous Flows
,
Butterworth-Heinemann
,
Boston, MA
, Chap. 4.
57.
Akaike
,
S.
,
1995
, “
On Friction Loss Coefficient of Rough Wall Passage
,”
Res. Rep. Kanagawa Inst. Technol., Part B, Sci. Technol.
,
19
, pp.
1
7
. Available at http://www.repository.lib.kanagawa-it.ac.jp/dspace/bitstream/10368/732/1/kkb-019-001.pdf
58.
Li
,
W. G.
,
2004
, “
A Method for Analyzing the Performance of Centrifugal Oil Pumps
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
482
485
.10.1115/1.1760544
59.
Asanuma
,
T.
,
1951
, “
On the Flow of Liquid Between Parallel Walls in Relative Motion
,”
Trans. JSME
,
17
(
60
), pp.
140
146
.10.1299/kikai1938.17.60_140
60.
Cornish
,
R. J.
,
1933
, “
Flow of Water Through Fine Clearances With Relative Motion of the Boundaries
,”
Proc. R. Soc. London, Ser. A
,
140
, pp.
227
240
.10.1098/rspa.1933.0065
61.
Arie
,
M.
,
Kiya
,
M.
,
Mitani
,
M.
, and
Ono
,
S.
,
1978
, “
A Model Experiment on the Discharge Rate Through Balancing Holes in a Centrifugal-Pump Impeller
,”
Bull. Fac. Eng., Hokkaido Univ.
,
89
, pp.
19
28
. Available at http://hdl.handle.net/2115/41501
62.
Kurokawa
,
J.
,
1990
, “
Simple Formulae for Volumetric Efficiency and Mechanical Efficiency of Turbomachinery
,”
Trans. JSME, Ser. B
,
56
(
531
), pp.
3389
3396
.10.1299/kikaib.56.3389
63.
Wilk
,
A.
,
2009
, “
Laboratory Investigations and Theoretical Analysis of Axial Thrust Problem in High Rotational Speed Pumps
,”
WSEAS Trans. Fluid Mech.
,
4
(
1
), pp.
1
13
. Available at http://www.wseas.us/e-library/transactions/fluid/2009/28-372.pdf
64.
Fried
,
E.
, and
Idelchik
,
I. E.
,
1989
,
Flow Resistance: A Design Guide for Engineers
,
Hemisphere Publishing Corporation
,
New York
, Chap. 4.
65.
Nemdili
,
A.
, and
Hellmann
,
D. H.
,
2007
, “
Investigations on Fluid Friction of Rotational Disks With and Without Modified Outlet Sections in Real Centrifugal Pump Casings
,”
Forsch. Ingenieurwes.
,
71
(
1
), pp.
59
67
.10.1007/s10010-006-0045-1
66.
Masuda
,
S.
, and
Matsubara
,
M.
,
1989
, “
Transition of Boundary Layer on Rotating Flat Plate
,”
Trans. JSME, Ser. B
,
55
(
516
), pp.
2162
2171
.10.1299/kikaib.55.2162
67.
Abe
,
H.
,
Matsumoto
,
K.
,
Kurokawa
,
J.
,
Matsui
,
J.
, and
Choi
,
Y. D.
,
2006
, “
Analysis and Control of Axial Thrust in Centrifugal Pump by Use of J-Groove
,”
Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems
,
Yokohama, Japan
, pp.
1
9
.
68.
Matsushita
,
K.
,
1965
, “
Studies on Centrifugal Pumps: Report 1
,”
Kagoshima Univ. Bull., Fac. Eng.
,
5
, pp.
45
49
. Available at http://ir.kagoshima-u.ac.jp/handle/10232/50
69.
Matsushita
,
K.
, and
Yonekura
,
T.
,
1972
, “
The Effect of the Roughness on the Head of the Outer Surface of the Impeller in Centrifugal Pumps
,”
Kagoshima Univ. Bull., Fac. Eng.
,
14
, pp.
7
9
. Available at http://ir.kagoshima-u.ac.jp/handle/10232/12839
70.
Li
,
W. G.
,
2012
, “
An Experimental Study on the Effect of Oil Viscosity and Wear-Ring Clearance on the Performance of an Industrial Centrifugal Pump
,”
ASME J. Fluids Eng.
,
134
(1), p.
014501
.10.1115/1.4005671
You do not currently have access to this content.