A modification of the viscous-inviscid interaction concept with the employment of coupled vortices around the airfoil wake is introduced for analyzing the airfoil stall. The analyzed flow includes the laminar boundary layers, laminar separation bubble, laminar-turbulent transition zone, turbulent boundary layers, turbulent separation zone, wake, and outer inviscid flow. Integral methods are employed for the boundary layers. The boundaries of separation zones are analyzed as free surfaces, however, their lengths and shapes depend on the Reynolds number. The described modification is validated by a comparison of the numerical results with the previously published experimental data for various airfoils and Reynolds numbers at low Mach numbers. This modification achieves a reasonably good agreement of the computed lift and moment coefficients with their measured values.

References

References
1.
Maughmer
,
M. D.
, and
Coder
,
J. G.
,
2010
, “
Comparisons of Theoretical Methods for Predicting Airfoil Aerodynamic Characteristics
,”
U.S. Army Research, Development and Engineering Command Technical Report No. 10-D-106
.
2.
Martin
,
P. B.
,
McAlister
,
K. W.
,
Chandrasekhara
,
M. S.
, and
Geissler
,
W.
,
2003
, “
Dynamic Stall Measurements and Computations for a VR-12 Airfoil With a Variable Droop Leading Edge
,”
American Helicopter Society 59th Annual Forum
,
Phoenix, AZ
.
3.
Raiesi
,
H.
,
Piomelli
,
U.
, and
Pollard
,
A.
,
2011
, “
Evaluation of Turbulence Models Using Direct Numerical and Large-Eddy Simulation Data
,”
ASME J. Fluids Eng.
,
133
(2), p.
021203
.10.1115/1.4003425
4.
Kwon
,
O. K.
, and
Pletcher
,
R. H.
,
1986
, “
A Viscous-Inviscid Interaction Procedure—Part 1: Method for Computing Two-Dimensional Incompressible Separated Channel Flows
,”
ASME J. Fluids Eng.
,
108
(1), pp.
64
70
.10.1115/1.3242544
5.
Kwon
,
O. K.
, and
Pletcher
,
R. H.
,
1986
, “
A Viscous-Inviscid Interaction Procedure—Part 2: Application to Turbulent Flow Over a Rearward-Facing Step
,”
ASME J. Fluids Eng.
,
108
(1), pp.
71
75
.10.1115/1.3242546
6.
Arndt
,
R. E. A.
,
Amromin
,
E. L.
, and
Hambleton
,
W.
,
2009
, “
Cavitation Inception in the Wake of a Jet-Driven Body
,”
ASME J. Fluids Eng.
,
131
(11), p.
111302
.10.1115/1.4000388
7.
Fridman
,
G. M.
, and
Achkinadze
,
A. S.
,
2001
, “
Review of Theoretical Approaches to Nonlinear Supercavitating Flows
,”
NATO Applied Vehicle Technology Panel, Brussels, Report No. RTO EN-010
.
8.
Tulin
,
M. P.
,
1964
, “
Supercavitating Flow—Small Perturbation Theory
,”
J. Ship Res.
,
7
, pp.
16
37
.
9.
Batchelor
,
G. K.
,
1970
,
An Introduction to Fluids Dynamics
,
Cambridge University Press
,
Cambridge, England
.
10.
Larsson
,
L.
,
Patel
,
V. C.
, and
Dyne
,
G.
,
1991
, “
Ship Viscous Flow
,”
SSPA, Gotenburg, Sweden, 1990 SSPA-CTN-IIHR Workshop Research Report
.
11.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Head Transfer
,
Springer-Verlag
,
New York
.
12.
Townsend
,
A. A.
,
1976
,
The Structure of Turbulent Boundary Layer
,
Cambridge University Press
,
Cambridge, England
.
13.
Agarwal
,
N. K.
, and
Simpson
,
R. L.
,
1990
, “
Backflow Structure of Steady and Unsteady Separating Turbulent Boundary Layer
,”
AIAA J.
,
28
, pp.
1764
1775
.10.2514/3.10472
14.
Eaton
,
J. K.
, and
Johnston
,
J. P.
,
1981
, “
A Review of Research on Subsonic Turbulent Flow Reattachment
,”
AIAA J.
,
19
, pp.
1093
1100
.10.2514/3.60048
15.
Amromin
,
E. L.
,
2002
, “
Scale Effect of Cavitation Inception on a 2D Eppler Hydrofoil
,”
ASME J. Fluids Eng.
,
124
(1), pp.
186
193
.10.1115/1.1427689
16.
Castillo
,
L.
,
Wang
,
X.
, and
George
,
W. K.
,
2004
Separation Criterion for Turbulent Boundary Layers via Similarity Analysis
,”
ASME J. Fluids Eng.
,
126
(3), pp.
297
304
.10.1115/1.1758262
17.
Tani
,
I.
,
Iuchi
,
M.
, and
Komoda
,
H.
,
1961
, “
Experimental Investigation of Flow Separation Associated With a Step or a Groove
,”
Aeronautical Research Institute, University of Tokyo, Report No. 364
.
18.
Ramamurthy
,
A. S.
,
Balanchandar
,
R.
, and
Govinda Ram
,
H. S.
,
1991
, “
Some Characteristics of Flow Past Backward Facing Steps Including Cavitation Effects
,”
ASME J. Fluids Eng.
,
113
(2), pp.
278
284
.10.1115/1.2909492
19.
Mabe
,
J. H.
,
Calkins
,
F. T.
,
Wesley
,
B.
,
Woszidlo
,
R.
,
Taubert
,
L.
, and
Wygnanski
,
I.
,
2007
, “
On the Use of Single Dielectric Barrier Discharge Plasma Actuators for Improving the Performance of Airfoils,
AIAA Paper No. 3972
.
20.
Beasley
,
W. D.
, and
McGhee
,
R. J.
,
1975
, “
Experimental and Theoretical Low-Speed Aerodynamic Characteristics of the NACA 651-213, a = 0.5 Airfoil
,”
NASA Technical Memorandum No. X-3160
.
21.
McAlister
,
K. W.
,
Pucci
,
S. L.
,
McCroskey
,
W. J.
, and
Carr
,
L. W.
,
1982
, “
An Experimental Study of Dynamic Stall on Advanced Airfoil Sections Volume. Pressure and Force Data
,”
USA AVRADCOM Technical Report No. 82-A-8
.
22.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
John Wiley and Sons
,
New York
.
23.
Silberstein
,
A.
,
1935
, “
Scale Effect on Clark Y Airfoil Characteristics From NACA Full-Scale Wind Tunnel Tests
,”
NACA Report No. 502
.
You do not currently have access to this content.