This work presents the development of a weakly compressible smoothed particle hydrodynamics (WCSPH) model for simulating two-dimensional transient viscoelastic free surface flow which has extensive applications in polymer processing industries. As an illustration for the capability of the model, the extrudate or die swell behaviors of second-order and Olyroyd-B polymeric fluids are studied. A systematic study has been carried out to compare constitutive models for second-order fluids available in literature in terms of their ability to capture the physics behind the swelling phenomenon. The effects of various process and rheological parameters on the die swell such as the extrusion velocity, normal stress coefficients, and Reynolds and Deborah numbers have also been investigated. The models developed here can predict both swelling and contraction of the extrudate successfully. The die swell of a second-order fluid was solved for a wide range of Deborah numbers and for two different Reynolds numbers. The numerical approach was validated through the solution of fully developed Newtonian and non-Newtonian viscoelastic flows in a two-dimensional channel as well as modeling the die swell of a Newtonian fluid. The results of these three benchmark problems were compared with analytic solutions and numerical results in literature when pertinent, and good agreements were obtained.

References

References
1.
Liang
,
Y. C.
,
Oztekin
,
A.
, and
Neti
,
S.
,
1999
, “
Dynamics of Viscoelastic Jets of Polymeric Liquid Extrudate
,”
J. Non-Newton. Fluid
,
81
(
1–2
), pp.
105
132
.10.1016/S0377-0257(98)00093-7
2.
Joseph
,
D. D.
,
Matta
,
J. E.
, and
Chen
,
K. P.
,
1987
, “
Delayed Die Swell
,”
J. Non-Newton Fluid
,
24
(
1
), pp.
31
65
.10.1016/0377-0257(87)85003-6
3.
Mitsoulis
,
E.
,
Vlachopoulos
,
J.
, and
Mirza
,
F. A.
,
1984
, “
Numerical-Simulation of Entry and Exit Flows in Slit Dies
,”
Polym. Eng. Sci.
,
24
(
9
), pp.
707
715
.10.1002/pen.760240913
4.
Mitsoulis
,
E.
,
1986
, “
The Numerical-Simulation of Boger Fluids: A Viscometric Approximation Approach
,”
Polym. Eng. Sci.
,
26
(
22
), pp.
1552
1562
.10.1002/pen.760262205
5.
Mitsoulis
,
E.
,
1999
, “
Three-Dimensional Non-Newtonian Computations of Extrudate Swell With the Finite Element Method
,”
Comput. Method. Appl. M.
,
180
(
3–4
), pp.
333
344
.10.1016/S0045-7825(99)00172-3
6.
Gast
,
L.
, and
Ellingson
,
W.
,
1999
, “
Die Swell Measurements of Second-Order Fluids: Numerical Experiments
,”
Int. J. Numer. Meth. Fl.
,
29
(
1
), pp.
1
18
.10.1002/(SICI)1097-0363(19990115)29:1<1::AID-FLD729>3.0.CO;2-R
7.
Ahn
,
Y. C.
, and
Ryan
,
M. E.
,
1991
, “
A Finite-Difference Analysis of the Extrudate Swell Problem
,”
Int. J. Numer. Meth. Fl.
,
13
(
10
), pp.
1289
1310
.10.1002/fld.1650131007
8.
Tome
,
M. F.
,
Doricio
,
J. L.
,
Castelo
,
A.
,
Cuminato
,
J. A.
, and
McKee
,
S.
,
2007
, “
Solving Viscoelastic Free Surface Flows of a Second-Order Fluid Using a Marker-and-Cell Approach
,”
Int. J. Numer. Meth. Fl.
,
53
(
4
), pp.
599
627
.10.1002/fld.1298
9.
De Paulo
,
G. S.
,
Tome
,
M. F.
, and
McKee
,
S.
,
2007
, “
A Marker-and-Cell Approach to Viscoelastic Free Surface Flows Using the PTT Model
,”
J. Non-Newton. Fluid.
,
147
, pp.
149
174
.10.1016/j.jnnfm.2007.08.003
10.
Mitsoulis
,
E.
,
Vlachopoulos
,
J.
, and
Mirza
,
F. A.
,
1985
, “
Simulation of Vortex Growth in Planar Entry Flow of a Viscoelastic Fluid
,”
J. Appl. Polym. Sci.
,
30
(
4
), pp.
1379
1391
.10.1002/app.1985.070300405
11.
McKee
,
S.
,
Tome
,
M. F.
,
Ferreira
,
V. G.
,
Cuminato
,
J. A.
,
Castelo
,
A.
,
Sousa
,
F. S.
, and
Mangiavacchi
,
N.
,
2008
, “
Review the MAC Method
,”
Comput. Fluid.
,
37
, pp.
907
930
.10.1016/j.compfluid.2007.10.006
12.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smooth Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron.
,
181
, pp.
375
389
.
13.
Rook
,
R.
,
Yildiz
,
M.
, and
Dost
,
S.
,
2007
, “
Modeling Transient Heat Transfer Using SPH and Implicit Time Integration
,”
Numer. Heat Tr B-Fund
,
51
(
1
), pp.
1
23
.10.1080/10407790600762763
14.
Monaghan
,
J. J.
, and
Kocharyan
,
A.
,
1995
, “
SPH Simulation of Multi-Phase Flow
,”
Comput. Phys. Comm.
,
87
, pp.
225
235
.10.1016/0010-4655(94)00174-Z
15.
Monaghan
,
J. J.
,
Huppert
,
H. E.
, and
Worster
,
M. G.
,
2005
, “
Solidification Using Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
206
(
2
), pp.
684
705
.10.1016/j.jcp.2004.11.039
16.
Rook
,
R.
, and
Dost
,
S.
,
2007
, “
The Use of Smoothed Particle Hydrodynamics for Simulating Crystal Growth From Solution
,”
Int. J. Eng. Sci.
,
45
(
1
), pp.
75
93
.10.1016/j.ijengsci.2006.09.004
17.
Seoa
,
S.
, and
Min
,
O.
,
2006
, “
Axisymmetric SPH Simulation of Elasto-Plastic Contact in the Low Velocity Impact
,”
Comput. Phys. Commun.
,
175
, pp.
583
603
.10.1016/j.cpc.2006.06.015
18.
Shao
,
S. D.
, and
Lo
,
E. Y. M.
,
2003
, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface
,”
Adv. Water Resour.
,
26
(
7
), pp.
787
800
.10.1016/S0309-1708(03)00030-7
19.
Fang
,
J. N.
,
Owens
,
R. G.
,
Tacher
,
L.
, and
Parriaux
,
A.
,
2006
, “
A Numerical Study of the SPH Method for Simulating Transient Viscoelastic Free Surface Flows
,”
J. Non-Newton Fluid
,
139
(
1–2
), pp.
68
84
.10.1016/j.jnnfm.2006.07.004
20.
Fang
,
J. N.
,
Parriaux
,
A.
,
Rentschler
,
M.
, and
Ancey
,
C.
,
2009
, “
Improved SPH Methods for Simulating Free Surface Flows of Viscous Fluids
,”
App. Num. Math.
,
59
(
2
), pp.
251
271
.10.1016/j.apnum.2008.02.003
21.
Morris
,
J. P.
,
Fox
,
P. J.
, and
Zhu
,
Y.
,
1997
, “
Modeling Low Reynolds Number Incompressible Flows Using SPH
,”
J. Comput. Phys.
,
136
(
1
), pp.
214
226
.10.1006/jcph.1997.5776
22.
Ellero
,
M.
,
Kroger
,
M.
, and
Hess
,
S.
,
2002
, “
Viscoelastic Flows Studied by Smoothed Particle Dynamics
,”
J. Non-Newton Fluid
,
105
(
1
), pp.
35
51
.10.1016/S0377-0257(02)00059-9
23.
Ellero
,
M.
, and
Tanner
,
R. I.
,
2005
, “
SPH Simulations of Transient Viscoelastic Flows at Low Reynolds Number
,”
J. Non-Newton Fluid
,
132
(
1–3
), pp.
61
72
.10.1016/j.jnnfm.2005.08.012
24.
Rafiee
,
A.
,
Manzari
,
M. T.
, and
Hosseini
,
M.
,
2007
, “
An Incompressible SPH Method for Simulation of Unsteady Viscoelastic Free-Surface Flows
,”
Int. J. Non-Linear Mech.
,
42
(
10
), pp.
1210
1223
.10.1016/j.ijnonlinmec.2007.09.006
25.
Massoudi
,
M.
, and
Vaidya
,
A.
,
2008
, “
On Some Generalizations of the Second Grade Fluid Model
,”
Nonlinear Anal. Real.
,
9
(
3
), pp.
1169
1183
.10.1016/j.nonrwa.2007.02.008
26.
Labropulu
,
F.
,
Xu
,
X.
, and
Chinichian
,
M.
,
2000
, “
Unsteady Stagnation Point Flow of a Non-Newtonian Second-Grade Fluid
,”
Math. Subj. Class.
,
60
, pp.
3797
3807
.
27.
Osswald
,
T. A.
, and
Hernández-Ortiz
,
J. P.
,
2006
,
Polymer Processing: Modeling and Simulation
,
Hanser Gardner Publications, Inc
., München, Germany.
28.
Dunn
,
J. E.
, and
Fosdick
,
R. L.
,
1974
, “
Thermodynamics, Stability and Boundedness of Fluids of Complexity 2 and Fluids of Second Grade
,”
Arch. Ration. Mech. Anal.
,
56
, pp.
191
252
.10.1007/BF00280970
29.
Han
,
C. D.
,
2007
,
Rheology and Processing of Polymeric Materials
,
Oxford University Press, Inc.
,
New York
.
30.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
, pp.
1703
1759
.10.1088/0034-4885/68/8/R01
31.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astr.
,
30
, pp.
543
574
.10.1146/annurev.aa.30.090192.002551
32.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
.
33.
Yildiz
,
M.
,
Rook
,
R. A.
, and
Suleman
,
A.
,
2009
, “
SPH With the Multiple Boundary Tangent Method
,”
Int. J. Numer. Meth. Eng.
,
77
(
10
), pp.
1416
1438
.10.1002/nme.2458
34.
Shadloo
,
M. S.
,
Zainali
,
A.
,
Sadek
,
S. H.
, and
Yildiz
,
M.
,
2011
, “
Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow Around Bluff Bodies
,”
Comput. Method. Appl. M.
,
200
(
9–12
), pp.
1008
1020
.10.1016/j.cma.2010.12.002
35.
Shadloo
,
M. S.
,
Zainali
,
A.
,
Yildiz
,
M.
, and
Suleman
,
A.
,
2012
, “
A Robust Weakly Compressible SPH Method and Its Comparison With an Incompressible SPH
,”
Int. J. Numer. Meth. Eng.
,
89
(
8
), pp.
939
956
.10.1002/nme.3267
36.
Issa
,
R.
,
Lee
,
E. S.
,
Violeau
,
D.
, and
Laurence
,
D. R.
,
2005
, “
Incompressible Separated Flows Simulations With the Smoothed Particle Hydrodynamics Gridless Method
,”
Int. J. Numer. Meth. Fl.
,
47
(
10–11
), pp.
1101
1106
.10.1002/fld.864
37.
Rodriguez-Paz
,
M.
, and
Bonet
,
J.
,
2005
, “
A Corrected Smooth Particle Hydrodynamics Formulation of the Shallow-Water Equations
,”
Comput. Struct.
,
83
(
17–18
), pp.
1396
1410
.10.1016/j.compstruc.2004.11.025
38.
Yildiz
,
M.
, and
Dost
,
S.
,
2009
,
Growth of Bulk SiGe Single Crystals by Liquid Phase Diffusion Method: Experimental and Computational Aspects
,
VDM Verlag, Germany
.
39.
Batchelor
,
J.
,
Berry
,
J. P.
, and
Horsfall
,
F.
,
1973
, “
Die Swell in Elastic and Viscous Fluids
,”
Polymer
,
14
(
7
), pp.
297
299
.10.1016/0032-3861(73)90121-3
40.
Horsfall
,
F.
,
1973
, “
A Theoretical Treatment of Die Swell in a Newtonian Liquid
,”
Polymer
,
14
(
6
), pp.
262
266
.10.1016/0032-3861(73)90086-4
41.
Tomé
,
M. F.
,
Grossi
,
L.
,
Castelo
,
A.
,
Cuminato
,
J. A.
,
McKee
,
S.
, and
Walters
,
K.
,
2007
, “
Die-Swell, Splashing Drop and a Numerical Technique for Solving the Oldroyd-B Model for Axisymmetric Free Surface Flows
,”
J. Non-Newton Fluid
,
141
(
2–3
), pp.
148
166
.10.1016/j.jnnfm.2006.09.008
You do not currently have access to this content.