A theoretical assessment was made explaining how aeromechanical feedback control can be implemented to stabilize rotating stall inception in high-speed axial compression systems. Ten aeromechanical control strategies were quantitatively evaluated based on the control-theoretic formulations and dimensionless performance analysis outlined in the Part I companion paper (McGee and Coleman, 2013, “Aeromechanical Control of High-Speed Axial Compressor Stall and Engine Performance—Part I: Control-Theoretic Models,” ASME J. Fluids Eng., 135(3), p. 031101). The maximum operating range for each aeromechanical control scheme was predicted for optimized structural parameters. Predictability and changeability in the hydrodynamic pressure, temperature, density, operability, and aeromechanical performance of dynamically-compensated, high-speed compressor maps of corrected pressure, corrected mass flow, corrected speeds, temperature ratios, and optimum efficiency were compared for the various aeromechanical control strategies. Compared with dynamically-compensated, low-speed compressor maps of pressure rise and flow coefficient (Gysling and Greitzer, 1995, “Dynamic Control of Rotating Stall in Axial Flow Compressors Using Aeromechanical Feedback,” ASME J. Turbomach., 117(3), pp. 307–319; McGee et al., 2004, “Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part I: Development of Models and Metrics, ASME J. Turbomach, 126(1), pp. 52–62; Fréchette et al., 2004, “Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part II: Evaluation of Approaches,” ASME J. Turbomach., 126(1), pp. 63–72), the present study shows that the most promising aeromechanical designs and controls for a class of high-speed compressors were the use of dynamic fluid injection. Dynamic compensations involving variable duct geometries and dynamically-re-staggered IGV and rotor blades were predicted to yield less controllability under high-speed flow environments. The aeromechanical interaction of a flexible casing wall was predicted to be destabilizing, and thus should be avoided in high-speed compression systems as in low-speed ones by designing sufficiently rigid structures to prevent casing ovalization or other structurally-induced variations in tip clearance.

References

References
1.
McGee
,
O. G.
, and
Coleman
,
K. L.
,
2013
, “
Aeromechanical Control of High-Speed Axial Compressor Stall and Engine Performance—Part I: Control-Theoretic Models
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031101
.10.1115/1.4005822
2.
Gysling
,
D. L.
, and
Greitzer
,
E. M.
,
1995
, “
Dynamic Control of Rotating Stall in Axial Flow Compressors Using Aeromechanical Feedback
,”
ASME J. Turbomach.
,
117
(3), pp.
307
319
.10.1115/1.2835665
3.
McGee
,
O. G.
,
Graf
,
M. B.
, and
Fréchette
,
L. G.
,
2004
, “
Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part I: Development of Models and Metrics
,”
ASME J. Turbomach.
,
126
(1), pp. 52–62.10.1115/1.1644555
4.
Fréchette
,
L. G.
,
McGee
,
O. G.
, and
Graf
,
M. B.
,
2004
, “
Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part II: Evaluation of Approaches
,”
ASME J. Turbomach.
,
126
(1), pp.
63
72
.10.1115/1.1644556
5.
Fréchette
,
L. G.
,
1997
, “
Implications of Stability Modeling for High-Speed Axial Compressor Design
,” M.S. thesis,
Department of Aeronautics and Astronautics, MIT,
Cambridge, MA
.
6.
Paduano
,
J. D.
,
Epstein
,
A. H.
,
Valavani
,
L.
,
Longley
,
J. P.
,
Greitzer
,
E. M.
, and
Guenette
,
G. R.
,
1993
, “
Active Control of Rotating Stall in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
115
(1), pp.
48
56
.10.1115/1.2929217
7.
Haynes
,
J. M.
,
Hendricks
,
G. J.
, and
Epstein
,
A. H.
,
1994
, “
Active Stabilization of Rotating Stall in a Three-Stage Axial Compressor
,”
ASME J. Turbomach.
,
116
(2), pp.
226
239
.10.1115/1.2928357
8.
Longley
,
J. P.
,
1994
, “
A Review of Nonsteady Flow Models for Compressor Stability
,”
ASME J. Turbomach.
,
116
(2), pp.
202
215
.10.1115/1.2928354
9.
Kerrebrock
,
J. L.
,
1992
,
Aircraft Engines and Gas Turbines
,
2nd ed.
,
MIT Press
,
Cambridge, MA
.
10.
Smith
,
L. H.
, Jr.
,
1958
, “
The Effect of Tip Clearance on the Peak Pressure Rise of Axial-Flow Fans and Compressors
,”
Proceedings of the ASME Symposium on Stall, ASME Fluid Mechanics Committee
,
Hydraulic Div.
,
New York
, Dec. 4–5, pp. 149–152.
11.
Koch
,
C. C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
ASME J. Eng. Power
,
103
(4), pp.
645
656
.10.1115/1.3230787
12.
Coleman
,
K. L.
, and
McGee
,
O. G.
, “
Stall Inception Sensitivity of Aeromechanically-Controlled High-Speed Axial-Flow Compressors
,” (to be published).
13.
McGee
,
O. G.
, and
Coleman
,
K. L.
, “
Similarity Metrics for Dynamically-Compensated High-Speed Axial-Flow Compressor Stall Control
,” (to be published).
14.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(4), pp.
621
656
.10.1115/1.2929299
15.
Lewis
,
R. I.
,
1996
,
Turbomachinery Performance Analysis
,
Wiley
,
New York
.
16.
Dixon
,
S. L.
,
1975
,
Fluid Mechanics, Thermodynamics of Turbomachinery
, Pergamon Press, Oxford.
17.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
H. I. H.
,
1987
,
Gas Turbine Theory
,
3rd ed.
,
Longman Scientific and Technical
,
Essex, UK
, Chaps. 5, 7.
18.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
,
London
, Chap. 10.
19.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
, pp.
455
469
.
20.
Day
,
I. J.
,
1993
, “
Active Suppression of Rotating Stall and Surge in Axial Compressors
,”
ASME J. Turbomach.
,
155
(1), pp.
40
47
.10.1115/1.2929216
21.
Day
,
I. J.
, and
Freeman
,
C.
,
1994
, “
The Unstable Behavior of Low and High-Speed Compressors
,”
ASME J. Turbomach.
,
116
(
2
), pp.
194–201
.10.1115/1.2928353
22.
Day
,
I. J.
,
Breuer
,
T.
,
Escuret
,
J.
,
Cherrett
,
M.
, and
Wilson
,
A.
,
1999
, “
Stall Inception and the Prospects for Active Control in Four High-Speed Compressors
,”
ASME J. Turbomach.
,
121
(1), pp.
18
27
.10.1115/1.2841229
23.
Behnken
,
R. L.
,
D’Andrea
,
R.
, and
Murray
,
R. M.
,
1995
, “
Control of Rotating Stall in a Low-Speed Axial Flow Compressor Using Pulsed Air Injection: Modeling, Simulations, and Experimental Validation
,” 34th
IEEE
Conference on Decision and Control,
New Orleans, LA
,
Dec.
13–15
.10.1109/CDC.1995.478613
24.
Freeman
,
C.
,
Wilson
,
A. G.
,
Day
,
I. J.
, and
Swinbanks
,
M. A.
,
1998
, “
Experiments in Active Control of Stall on an Aeroengine Gas Turbine
,”
ASME J. Turbomach.
,
120
(
4
), pp.
637
647
.10.1115/1.2841773
25.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Fréchette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
,
1998
, “
Active Stabilization of Rotating Stall and Surge in a Transonic Single-Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
(4), pp.
625
636
.10.1115/1.2841772
26.
Lee
,
N. K. W.
, and
Greitzer
,
E. M.
,
1990
, “
Effects of Endwall Suction and Blowing on Compressor Stability Enhancement
,”
ASME J. Turbomach.
,
112
(1), pp.
133
144
.10.1115/1.2927410
27.
Suder
,
K. L.
,
Hathaway
,
M. D.
,
Thorp
,
S. A.
,
Strazisar
,
A. J.
,
Bright
,
M. B.
,
2001
, “
Compressor Stability Enhancement Using Discrete Tip Injection
,”
ASME J. Turbomach.
,
123
(1), pp.
14
23
.10.1115/1.1330272
You do not currently have access to this content.