This paper describes the general convection-diffusion equation in 2D domain based on a particular fourth order finite difference method. The current fourth-order compact formulation is implemented for the first time, which offers a semi-explicit method of solution for the resulting equations. A nine point finite difference scheme with uniform grid spacing is also put into action for discretization purpose. The proposed numerical model is based on the Navier–Stokes equations in a stream function-vorticity formulation. The fast convergence characteristic can be mentioned as an advantage of this scheme. It combines the enhanced Fournié's fourth order scheme and the expanded fourth order boundary conditions, while offering a semi-explicit formulation. To accomplish this, some coefficients which do not influence the solutions are also omitted from Fournié's formulation. Consequently, very accurate results can be acquired with a relatively coarse mesh in a short time. The robustness and accuracy of the proposed scheme is proved using the benchmark problems of flow in a driven square cavity at medium and relatively high Reynolds numbers, flow over a backward-facing step, and flow in an L-shaped cavity.

References

References
1.
Chung
,
T. J.
,
2002
,
Computational Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Dwoyer
,
D. L.
,
Hussaini
,
M. Y.
, and
Voigt
,
R. G.
,
1987
,
Finite Elements: Theory and Application
,
Springer
,
New York
.
3.
Anderson
,
D.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
,
1984
,
Computational Fluid Mechanics and Heat Transfer
,
McGraw-Hill
,
New York
.
4.
Power
,
H.
, and
Wrobel
,
L. C.
,
1995
,
Boundary Integral Methods in Fluid Mechanics
,
Computational Mechanics Publications
,
Southampton, UK
.
5.
Young
,
D. L.
,
Huang
,
J. L.
, and
Eldho
,
T. I.
,
2001
, “
Simulation of Laminar Vortex Shedding Flow Past Cylinders Using a Coupled BEM and FEM Model
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
45
), pp.
5975
5998
.10.1016/S0045-7825(01)00208-0
6.
Young
,
D. L.
,
Huang
,
J. L.
, and
Eldho
,
T. I.
,
2000
, “
A Combined BEM–FEM Model for the Velocity–Vorticity Formulation of the Navier-Stokes Equations in Three Dimensions
,”
Eng. Anal. Boundary Elem.
,
24
(
4
), pp.
307
316
.10.1016/S0955-7997(00)00010-2
7.
Zunic
,
Z.
,
Skerget
,
L.
,
Hribersek
,
M.
, and
Ravnik
,
J.
,
2005
, “
Boundary Element-Finite Element Method for Velocity–Vorticity Formulation of Navier-Stokes Equations
,”
Comput. Methods Exp. Meas.
,
41
, pp.
793
802
.
8.
Onyemelukwe
,
O. U.
,
Roy
,
B.
, and
Bosch
,
H.
,
1998
, “
Coupling of the Finite-Difference Method and the Boundary Element–Dual Reciprocity Method for Wind Flow Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
77–78
, pp.
631
641
.10.1016/S0167-6105(98)00178-0
9.
DeSilva
,
S. J.
, and
Chan
,
C. L.
,
2008
, “
Coupled Boundary Element Method and Finite Difference Method for the Heat Conduction in Laser Processing
,”
Appl. Math. Model.
,
32
(
11
), pp.
2429
2458
.10.1016/j.apm.2007.09.034
10.
Ghadimi
,
P.
, and
Dashtimanesh
,
A.
,
2011
, “
Solution of 2D Navier–Stokes Equation by Coupled Finite Difference-Dual Reciprocity Boundary Element Method
,”
Appl. Math. Model.
,
35
(
5
), pp.
2110
2121
.10.1016/j.apm.2010.11.047
11.
Dennis
,
S. C. R.
, and
Hudson
,
J. D.
,
1989
, “
Compact h4 Finite-Difference Approximations to Operators of Navier-Stokes Type
,”
J. Comput. Phys.
,
85
, pp.
390
416
.10.1016/0021-9991(89)90156-3
12.
MacKinnon
,
R. J.
, and
Johnson
,
R. W.
,
1991
, “
Differential-Equation-Based Representation of Truncation Errors for Accurate Numerical Simulation
,”
Int. J. Numer. Methods Fluids
,
13
(
6
), pp.
739
757
.10.1002/fld.1650130606
13.
Gupta
,
M. M.
,
Manohar
,
R. P.
, and
Stephenson
,
J. W.
,
1984
, “
A Single Cell High Order Scheme for the Convection-Diffusion Equation With Variable Coefficients
,”
Int. J. Numer. Methods Fluids
,
4
(
7
), pp.
641
651
.10.1002/fld.1650040704
14.
Zhang
,
J.
,
2003
, “
Numerical Simulation of 2D Square Driven Cavity Using Fourth-Order Compact Finite Difference Scheme
,”
Comput. Math. Appl.
,
45
, pp.
43
52
.10.1016/S0898-1221(03)80006-8
15.
Li
,
M.
,
Tang
,
T.
, and
Fornberg
,
B.
,
1995
, “
A Compact Fourth-Order Finite Difference Scheme for the Steady Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
20
, pp.
1137
1151
.10.1002/fld.1650201003
16.
Erturk
,
E.
,
2008
, “
Numerical Performance on Compact Fourth-Order Formulation of the Navier-Stokes Equations
,”
Commun. Numer. Methods Eng.
,
24
, pp.
2003
2019
.10.1002/cnm.1090
17.
Spotz
,
W. F.
, and
Carey
,
G. F.
,
1995
, “
High-Order Compact Scheme for the Steady State Stream-Function Vorticity Equation
,”
Int. J. Numer. Methods Eng.
,
38
(
20
), pp.
3497
3512
.10.1002/nme.1620382008
18.
Fournié
,
M.
, and
Karaa
,
S.
,
2006
, “
Iterative Methods and High-Order Difference Schemes for 2D Elliptic Problems With Mixed Derivative
,”
Appl. Math. Comput.
,
22
(
3
), pp.
349
363
.10.1007/BF02832060
19.
Liggett
,
J. A.
, and
Caughey
,
D.
,
1994
,
Fluid Mechanics
,
McGraw-Hill Inc.
,
New York
.
20.
Gupta
,
M. M.
,
1991
, “
High Accuracy Solutions of Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
93
, pp.
343
359
.10.1016/0021-9991(91)90188-Q
21.
Stortkuhl
,
T.
,
Zenger
,
C.
, and
Zimmer
,
S.
,
1994
, “
An Asymptotic Solution for the Singularity at the Angular Point of the Lid Driven-Cavity
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(
1
), pp.
47
59
.10.1108/EUM0000000004030
22.
Erturk
,
E.
,
2009
, “
Discussions on Driven Cavity Flow
,”
Int. J. Numer. Methods Fluids
,
60
, pp.
275
294
.10.1002/fld.1887
23.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
24.
Oosterlee
,
C. W.
,
Wesseling
,
P.
,
Segal
,
A.
, and
Brakkee
,
E.
,
1993
, “
Benchmark Solutions for the Incompressible Navier-Stokes Equations in General Co-Ordinates on Staggered Grids
,”
Int. J. Numer. Methods Fluids
,
17
, pp.
301
321
.10.1002/fld.1650170404
25.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schonung
,
B.
,
1983
, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
,
127
, pp.
473
96
.10.1017/S0022112083002839
26.
Erturk
,
E.
,
2008
, “
Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step, Part I: High Reynolds Number Solutions
,”
J. Comput. Fluids
,
37
(
6
), pp.
633
655
.10.1016/j.compfluid.2007.09.003
You do not currently have access to this content.