A linear analysis for the instability of viscous flow between two porous concentric circular cylinders driven by a constant azimuthal pressure gradient is presented when a radial flow through the permeable walls of the cylinders is present. In addition, a constant heat flux at the inner cylinder is applied. The linearized stability equations form an eigenvalue problem, which is solved by using the classical Runge–Kutta–Fehlberg scheme combined with a shooting method, which is termed the unit disturbance method. It is found that for a given value of the constant heat flux parameter N, even for a radially weak outward flow, there is a strong stabilizing effect and the stabilization is greater as the gap between the cylinders increases. However, in the presence of a weak inward flow for a wider gap, the constant heat flux has no role on the onset.

References

References
1.
Andereck
,
C. D.
,
Liu
,
S. S.
, and
Swinney
,
H. L.
,
1986
, “
Flow Regimes in a Circular Couette System With Independently Rotating Cylinders
,”
J. Fluid Mech.
,
164
, pp.
155
183
.10.1017/S0022112086002513
2.
Snyder
,
H. A.
,
1970
, “
Waveforms in Rotating Couette Flow
,”
Int. J. Non-Linear Mech.
,
5
(4), pp.
659
685
.10.1016/0020-7462(70)90055-7
3.
Dean
,
W. R.
,
1928
, “
Fluid Motion in a Curved Channel
,”
Proc. R. Soc. London A
,
121
, pp.
402
420
.10.1098/rspa.1928.0205
4.
Reid
,
W. H.
,
1958
, “
On the Stability of Viscous Flow in a Curved Channel
,”
Proc. R. Soc. London A
,
244
, pp.
186
198
.10.1098/rspa.1958.0035
5.
Gibson
,
R. D.
, and
Cook
,
A. E.
,
1974
, “
The Stability of Curved Channel Flow
,”
Q. J. Mech. Appl. Math.
,
27
, pp.
149
160
.10.1093/qjmam/27.2.149
6.
Mutabazi
,
I.
,
Goharzadeh
,
A.
, and
Dumouchel
,
F.
,
2001
, “
The Circular Couette Flow With a Radial Temperature Gradient
,” 12th International Couette-Taylor Workshop,
Evanston, IL
, Sept. 6–8.
7.
Ball
,
K. S.
,
Farouk
,
B.
, and
Dixit
,
V. C.
,
1989
, “
An Experimental Study of Heat Transfer in a Vertical Annulus With a Rotating Inner Cylinder
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1517
1527
.10.1016/0017-9310(89)90073-2
8.
Lepiller
,
V.
,
Goharzadeh
,
A.
, and
Prigent
,
A.
,
2008
, “
Weak Temperature Gradient on the Stability of Circular Couette Flow
,”
Eur. Phys. J. B
,
61
, pp.
445
455
.10.1140/epjb/e2008-00105-2
9.
Liu
,
D.
,
Choi
,
S. H.
, and
Kim
,
H. B.
,
2009
, “
Experiments on the Stability of Taylor–Couette Flow With Radial Temperature Gradient
,”
10th Int. Conference on Fluid Control, Measurements and Visualization (FLUCOME 2009)
,
Moscow, Russia
, Aug. 17–21.
10.
Chandrasekhar
,
S.
,
1954
, “
The Stability of Flow Between Rotating Cylinders in the Presence of a Radial Temperature Gradient
,”
Arch. Ration. Mech. Anal.
,
3
, pp.
181
207
. Available at http://www.iumj.indiana.edu/IUMJ/FTDLOAD/1954/3/53009/pdf
11.
Ali
,
M. A.
,
Takhar
,
H. S.
, and
Soundalgekar
,
V. M.
,
1998
, “
Effect of Radial Temperature Gradient on the Stability of Flow in a Curved Channel
,”
Proc. R. Soc. London A
,
454
, pp.
2279
2287
10.1098/rspa.1998.0259.
12.
Min
,
K.
, and
Lueptow
,
R. M.
,
1994
, “
Hydrodynamic Stability of Viscous Flow Between Rotating Porous Cylinders With Radial Flow
,”
Phys. Fluids
,
6
, pp.
144
151
.10.1063/1.868077
13.
Kroner
,
K. H.
,
Nissinen
,
V.
, and
Ziegler
,
H.
,
1987
, “
Improving Dynamic Filtration of Microbial Suspensions
,”
Biotechnology
,
5
, pp.
921
926
.10.1038/nbt0987-921
14.
Wronski
,
S.
,
Molga
,
E.
, and
Rudniak
,
L.
,
1989
, “
Dynamic Filtration in Biotechnology
,”
Bioprocess Eng.
,
4
, pp.
99
104
.10.1007/BF00369757
15.
Ali
,
M. A.
,
Takhar
,
H. S.
, and
Soundalgekar
,
V. M.
,
2001
, “
Effect of Radial Temperature Gradient on the Stability of Viscous Flow Between Two Rotating Porous Cylinders With a Narrow Gap
,”
Z. Angew. Math. Mech.
,
81
(
7
), pp.
457
464
.10.1002/1521-4001(200107)81:7<457::AID-ZAMM457>3.0.CO;2-Q
16.
Kolesov
,
V. V.
, and
Shapakidze
,
L. D.
,
2011
, “
Instabilities and Transition in Flows Between Two Porous Concentric Cylinders With Radial Flow and a Radial Temperature Gradient
,”
Phys. Fluids
,
23
, p.
014107
.10.1063/1.3534026
17.
Deka
,
R. K.
, and
Takhar
,
H. S.
,
2004
, “
Hydrodynamic Stability of Viscous Flow Between Curved Porous Channel With Radial Flow
,”
Int. J. Eng. Sci.
,
42
, pp.
953
966
.10.1016/j.ijengsci.2003.11.005
18.
Deka
,
R. K.
,
Gupta
,
A. S.
, and
Das
,
S. K.
,
2007
, “
Stability of Viscous Flow Driven by an Azimuthal Pressure Gradient Between Two Porous Concentric Cylinders With Radial Flow and a Radial Temperature Gradient
,”
Acta Mech.
,
189
(
1–4
), pp.
73
86
.10.1007/s00707-006-0399-3
19.
Sparrow
,
E. M.
,
Goldstein
,
R. J.
, and
Jonsson
,
U. K.
,
1964
, “
Thermal Instability in a Horizontal Fluid Layer: Effect of Boundary Conditions and Non-Linear Temperature Profiles
,”
J. Fluid Mech.
,
18
, pp.
513
528
.10.1017/S0022112064000386
20.
Takhar
,
H. S.
,
Ali
,
M. A.
, and
Soundalgekar
,
V. M.
,
1988
, “
Effects of Radial Temperature Gradient on the Stability of Flow in a Narrow Gap Annulus With Constant Heat Flux at the Inner Rotating Cylinder
,”
Waerme-Stoffuebertrag
,
22
, pp.
23
28
.10.1007/BF01001568
21.
Soundalgekar
,
V. M.
,
Takhar
,
H. S.
, and
Ali
,
M. A.
,
1988
, “
Effect of Radial Temperature Gradient on the Stability of Flow in an Annulus With Constant Heat Flux at the Inner Cylinder
,”
J. Franklin Inst.
,
325
, pp.
609
619
.10.1016/0016-0032(88)90036-1
22.
Ali
,
M. A.
,
Takhar
,
H. S.
, and
Soundalgekar
,
V. M.
,
1992
, “
Stability of Flow Between Two Rotating Cylinders in the Presence of a Constant Heat Flux at the Outer Cylinder and Radial Temperature Gradient: Narrow Gap Problem
,”
ASME J. Appl. Mech.
,
59
(2), pp.
464
465
.10.1115/1.2899548
23.
Eagles
,
P. M.
, and
Soundalgekar
,
V. M.
,
1997
, “
Stability of Flow Between Two Rotating Cylinders in the Presence of a Constant Heat Flux at the Outer Cylinder and Radial Temperature Gradient-Wide Gap Problem
,”
Heat Mass Transfer
,
33
, pp.
257
260
.10.1007/s002310050186
24.
Walowit
,
J. A.
,
1966
, “
The Stability of Couette Flow Between Rotating Cylinders in the Presence of a Radial Temperature Gradient
,”
AIChE J.
,
12
(
1
), pp.
104
109
.10.1002/aic.690120121
25.
Joseph
,
D. D.
,
1965
, “
Stability of Frictionally Heated Flow
,”
Phys. Fluids
,
8
, pp.
2195
2200
.10.1063/1.1761180
26.
Sukanek
,
P. C.
,
Goldstein
,
C. A.
, and
Laurence
,
R. L.
,
1973
, “
The Stability of Plane Couette Flow With Viscous Heating
,”
J. Fluid Mech.
,
57
, pp.
651
670
.10.1017/S002211207300193X
27.
Al-Mubaiyedh
,
U. A.
,
Sureshkumar
,
R.
, and
Khomami
,
B.
,
2002
, “
The Effect of Viscous Heating on the Stability of Taylor–Couette Flow
,”
J. Fluid Mech.
,
462
, pp.
111
132
.10.1017/S0022112002008492
28.
White
,
J. M.
, and
Muller
,
S. J.
,
2002
, “
Experimental Studies on the Stability of Newtonian Taylor–Couette Flow in the Presence of Viscous Heating
,”
J. Fluid Mech.
,
462
, pp.
133
159
.10.1017/S0022112002008443
29.
Brewster
,
D. B.
,
Grosberg
,
P.
, and
Nissan
,
A. H.
,
1959
, “
The Stability of Viscous Flow Between Horizontal Concentric Cylinders
,”
Proc. R. Soc. London A
,
251
, pp.
76
91
.10.1098/rspa.1959.0091
30.
Walowit
,
J.
,
Tsao
,
S.
, and
DiPrima
,
R. C.
,
1964
, “
Stability of Flow Between Arbitrarily Spaced Concentric Cylindrical Surfaces Including the Effect of Radial Temperature Gradient
,”
ASME, J. Appl. Mech.
,
31
(4), pp.
585
593
.10.1115/1.3629718
31.
Dubrulle
,
B.
,
Dauchot
,
O.
,
Daviaud
,
F.
,
Longaretti
,
P. Y.
,
Richard
,
D.
, and
Zahn
,
J. P.
,
2005
, “
Stability and Turbulent Transport in Taylor–Couette Flow From Analysis of Experimental Data
,”
Phys. Fluids
,
17
, p.
095103
.10.1063/1.2008999
32.
Harris
,
D. L.
, and
Reid
,
W. H.
,
1964
, “
On the Stability of Viscous Flow Between Rotating Cylinders—Part 2: Numerical Analysis
,”
J. Fluid Mech.
,
20
, pp.
95
101
.10.1017/S0022112064001033
33.
Chen
,
F.
, and
Chang
,
M. H.
,
1992
, “
Stability of Taylor–Dean Flow in a Small Gap Between Rotating Cylinders
,”
J. Fluid Mech.
,
243
, pp.
443
445
.10.1017/S0022112092002775
You do not currently have access to this content.