Microbubbles are broadly used as ultrasound contrast agents. In this paper we use a low-cost flow focusing microchannel fabrication method for preparing microbubble contrast agents by using some surface active agents and a viscosity enhancing material to obtain appropriate microbubbles with desired lifetime and stability for any in vitro infusion for velocity measurement. All the five parameters that govern the bubble size extract and some efforts are done to achieve the smallest bubbles by adding suitable surfactant concentrations. By using these microbubbles for the echo-particle image velocimetry method, we experimentally determine the velocity field of steady state and pulsatile pipe flows.

References

1.
Garstecki
,
P.
,
Ganan-Calvo
,
A. M.
, and
Whitesides
,
G. M.
,
2005
, “
Formation of Bubbles and Droplets in Microfluidic Systems
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
53
, pp.
361
372
.
2.
Yasuno
,
M.
,
Sugiura
,
S.
,
Iwamoto
,
S.
,
Nakajima
,
M.
,
Shono
,
A.
, and
Satoh
,
K.
,
2004
, “
Monodispersed Microbubble Formation Using Microchannel Technique
,”
AIChE J.
,
50
, pp.
3227
3233
.10.1002/aic.10276
3.
Garstecki
,
P.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2005
, “
Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions
,”
Phys. Rev. Lett.
,
94
, p.
164501
.10.1103/PhysRevLett.94.164501
4.
Xu
,
S.
,
Nie
,
Z.
,
Seo
,
M.
,
Lewis
,
P.
,
Kumacheva
,
E.
,
Stone
,
H. A.
,
Garstecki
,
P.
,
Weibel
,
D. B.
,
Gitlin
,
I.
, and
Whitesides
,
G. M.
,
2005
, “
Generation of Monodisperse Particles by Using Microfluidics: Control Over Size, Shape, and Composition
,”
Angew. Chem., Int. Ed.
,
44
, pp.
724
728
.10.1002/anie.200462226
5.
Hettiarachchi
,
K.
,
Talu
,
E.
,
Longo
,
M. L.
,
Dayton
,
P. A.
, and
Lee
,
A. P.
,
2007
, “
On-Chip Generation of Microbubbles as a Practical Technology for Manufacturing Contrast Agents for Ultrasonic Imaging
,”
Lab Chip
,
7
, pp.
463
468
.10.1039/B701481N
6.
Chakraborty
,
D.
, and
Chakraborty
,
S.
,
2010
, “
Controlled Microbubble Generation on a Compact Disk
,”
Appl. Phys. Lett.
,
97
, p.
234103
.10.1063/1.3524518
7.
Hashimoto
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Formation of Bubbles in a Multisection Flow-Focusing Junction
,”
Small
,
6
, pp.
1051
1059
.10.1002/smll.200902164
8.
Fu
,
T.
,
Ma
,
Y.
,
Funfschilling
,
D.
, and
Li
,
H. Z.
,
2011
, “
Gas–Liquid Flow Stability and Bubble Formation in Non-Newtonian Fluids in Microfluidic Flow-Focusing Devices
,”
Microfluid. Nanofluid.
,
10
(5), pp.
1135
1140
.10.1007/s10404-010-0741-x
9.
Davidson
,
M. R.
,
Harvie
,
D. J. E.
, and
Cooper-White
,
J. J.
,
2005
, “
Flow Focusing in Microchannels
,”
ANZIAM J.
,
46
, pp.
C47
C58
.10.0000/anziamj.v46i0.946
10.
Wilson
,
S. R.
, and
Burns
,
P. N.
,
2010
, “
Microbubble-Enhanced US in Body Imaging: What Role?
,”
Radiology
,
257
, pp.
24
39
.10.1148/radiol.10091210
11.
Fillinger
,
M. F.
, and
Schwartz
,
R. A.
,
1993
, “
Volumetric Blood Flow Measurement With Color Doppler Ultrasonography: The Importance of Visual Clues
,”
J. Ultrasound Med.
,
12
, pp.
123
130
.
12.
Kim
,
H. B.
,
Hertzberg
,
J. R.
, and
Shandas
,
R.
,
2004
, “
Development and Validation of Echo PIV
,”
Exp. Fluids
,
36
, pp.
455
462
.10.1007/s00348-003-0743-5
13.
Kim
,
H. B.
,
Hertzberg
,
J.
,
Lanning
,
C.
, and
Shandas
,
R.
,
2004
, “
Noninvasive Measurement of Steady and Pulsating Velocity Profiles and Shear Rates in Arteries Using Echo PIV: In Vitro Validation Studies
,”
Ann. Biomed. Eng.
,
32
, pp.
1067
1076
.10.1114/B:ABME.0000036643.45452.6d
14.
Shandas
,
R.
,
Kim
,
H. B.
,
Hertzberg
,
J.
,
DeGroff
,
C. G.
,
Monet
,
E.
, and
Cruz
,
L. V.
,
2003
, “
In Vivo Validation of the Echo-PIV Technique: Animal and Clinical Studies
,” 2003 ASME Summer Bioengineering Conference, Key Biscayne, FL, June 25–29, pp.
61
62
.
15.
Jo
,
B. H.
,
van Lerberghe
,
L. M.
,
Motsegood
,
K. M.
, and
Beebe
,
D. J.
,
2000
, “
Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer
,”
J. MEMS
,
9
, pp.
76
81
.10.1109/84.825780
16.
Chow
,
W. W. Y.
,
Lei
,
K. F.
,
Shi
,
G.
,
Li
,
W. J.
, and
Huang
,
Q.
,
2006
, “
Microfluidic Channel Fabrication by PDMS-Interface Bonding
,”
Smart Mater. Struct.
,
15
, pp.
112
116
.10.1088/0964-1726/15/1/018
17.
Chen
,
C.
,
Zhu
,
Y.
,
Leech
,
P. W.
, and
Manasseh
,
R.
,
2009
, “
Production of Monodispersed Micron-Sized Bubbles at High Rates in a Microfluidic Device
,”
Appl. Phys. Lett.
,
95
, p.
144101
.10.1063/1.3242019
18.
Xu
,
J. H.
,
Li
,
S. W.
,
Wang
,
Y. J.
, and
Luo
,
G. S.
,
2006
, “
Controllable Gas-Liquid Phase Flow Patterns and Monodisperse Microbubbles in a Microfluidic T-Junction Device
,”
Appl. Phys. Lett.
,
88
, p.
133506
.10.1063/1.2189570
19.
Dreyfus
,
R.
,
Tabeling
,
P.
, and
Willaime
,
H.
,
2003
, “
Ordered and Disordered Patterns in Two-Phase Flows in Microchannels
,”
Phys. Rev. Lett.
,
90
, p.
144505
.10.1103/PhysRevLett.90.144505
20.
Xu
,
J. H.
,
Li
,
S. W.
,
Chen
,
G. G.
, and
Luo
,
G. S.
,
2006
, “
Formation of Monodisperse Microbubbles in a Microfluidic Device
,”
AIChE J.
,
52
, pp.
2254
2259
.10.1002/aic.10824
You do not currently have access to this content.