A miniature viscous disk pump (VDP) is utilized to characterize and quantify non-Newtonian fluid deviations due to non-Newtonian influences relative to Newtonian flow behavior. Such deviations from Newtonian behavior are induced by adding different concentrations of sucrose to purified water, with increasing non-Newtonian characteristics as sucrose concentration increases from 0% (pure water) to 10% by mass. The VDP consists of a 10.16 mm diameter disk that rotates above a C-shaped channel with inner and outer radii of 1.19 mm, and 2.38 mm, respectively, and a channel depth of 200 μm. Fluid inlet and outlet ports are located at the ends of the C-shaped channel. Within the present study, experimental data are given for rotational speeds of 1200–2500 rpm, fluid viscosities of 0.001–0.00134 Pa s, pressure rises of 0–220 Pa, and flow rates up to approximately 0.00000005 m3/s. The theory of Flumerfelt is modified and adapted for application to the present VDP environment. Included is a new development of expressions for dimensionless volumetric flow rate, and normalized local circumferential velocity for Newtonian and non-Newtonian fluid flows. To quantify deviations due to the magnitude non-Newtonian flow influences, a new pressure rise parameter is employed, which represents the dimensional pressure rise change at a particular flow rate and sucrose concentration, as the flow changes from Newtonian to non-Newtonian behavior. For 5% and 10% sucrose solutions at rotational speeds of 1200–2500 rpm, this parameter increases as the disk dimensional rotational speed increases and as the volumetric flow rate decreases. Associated magnitudes of the pressure difference parameter show that the fluid with the larger sucrose concentration (by mass) produces significantly larger differences between Newtonian and non-Newtonian fluid flow, for each value of dimensional volumetric flow rate. For each disc rotational speed, compared to Newtonian data, dimensional pressure rise variations with dimensional volumetric flow rate, which are associated with the non-Newtonian data, are generally lower when compared at a particular volumetric flow rate. Agreement with analytic results, for any given flow rate, rotational speed, and flow passage height, validates the shear stress model employed to represent non-Newtonian behavior, as well as the analytic equations and tools (based upon the Navier–Stokes equations) which are employed to predict measured behavior over the investigated range of experimental conditions.

References

References
1.
Nguyen
,
N.-T.
, and
Wereley
,
S. T.
,
2002
,
Fundamentals and Applications of Microfluidics
,
Artech House, Inc.
,
Norwood
, MA, pp.
292
337
.
2.
Olsson
,
A.
,
Steeme
,
G.
, and
Steeme
,
E.
,
1995
, “
A Valve-Less Planar Fluid Pump With Two Pump Chambers
,”
Sens. Actuators A
,
47
(
2
), pp.
549
556
.10.1016/0924-4247(94)00960-P
3.
Tsia
,
J. H.
, and
Lin
,
L.
,
2002
, “
A Thermal Bubble Actuated Micro Nozzle-Diffuser Pump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
665
668
.10.1109/JMEMS.2002.802909
4.
Nguyen
,
N. T.
, and
Huang
,
X. Y.
,
2001
, “
Miniature Valveless Pumps Based on Printed Circuit Board Technique
,”
Sens. Actuators A
,
88
(
2
), pp.
104
111
.10.1016/S0924-4247(00)00500-8
5.
Benard
,
W. L.
,
Kahn
,
H.
,
Heuer
,
A. H.
, and
Huff
,
M. S.
,
1998
, “
Thin Film Shape-Memory Alloy Actuated Micropumps
,”
J. Microelectromech. Syst.
,
7
(
2
), pp.
245
251
.10.1109/84.679390
6.
Meng
,
E.
,
Wang
,
X.-Q.
,
Mak
,
H.
, and
Tai
,
Y.-C.
,
2000
, “
A Check-Valved Silicone Diaphragm Pump
,” Proceedings of
MEMS
'00, 13th International Workshop Micro Electro Mechanical Systems, Japan, Jan. 23–27, pp.
62
67
. 10.1109/MEMSYS.2000.838491
7.
Gass
,
V.
,
van der Schoot
,
B. H.
,
Jeanneret
,
S.
, and
de Rooij
,
N. F.
,
1994
, “
Integrated Flow-Regulated Silicon Micropump
,”
Sens. Actuators A
,
43
, pp.
335
338
.10.1016/0924-4247(93)00703-7
8.
Saggere
,
L.
,
Hagood
,
N. W.
,
Roberts
,
D. C.
,
Li
,
H. Q.
,
Steyn
,
J. L.
,
Turner
,
K.
,
Carretero
,
J. A.
,
Yaglioglu
,
O.
,
Su
,
Y. H.
,
Mlcak
,
R.
,
Spearing
,
S. M.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
,
2000
, “
Design, Fabrication, and Testing of a Piezoelectrically Driven High Flow Rate Micro-Pump
,”
Proceedings of the
12th
IEEE
International Symposium on Applications of Ferroelectrics, July 21–Aug. 2, Vol. 1, pp.
297
300
.10.1109/ISAF.2000.941559
9.
Richter
,
A.
,
Plettner
,
A.
,
Hofmann
,
K. A.
, and
Sandmaier
,
H.
,
1991
, “
A Micromachined Electrohydrodynamic (EHD) Pump
,”
Sens. Actuators A
,
29
, pp.
159
168
.10.1016/0924-4247(91)87118-M
10.
Fuhr
,
G.
,
Hagedorn
,
R.
,
Muller
,
T.
,
Benecke
,
W.
, and
Wagner
,
B.
,
1992
, “
Microfabricated Electrohydrodynamic (EHD) Pumps for Liquids of Higher Conductivity
,”
J. Microelectromech. Syst.
,
1
(
3
), pp.
141
146
.10.1109/84.186393
11.
Ahn
,
S. H.
, and
Kim
,
Y. K.
,
1998
, “
Fabrication and Experiment of a Planar Micro Ion Drag Pump
,”
Sens. Actuators A
,
70
, pp.
1
5
.10.1016/S0924-4247(98)00105-8
12.
Furuya
,
A.
,
Shimokawa
,
F.
,
Matsuura
,
T.
, and
Sawada
,
R.
,
1996
, “
Fabrication of Fluorinated Polyimide Microgrids Using Magnetically Controlled Reactive Ion Etching (MC_RIE) and Their Applications to a Ion Drag Integrated Micropump
,”
J. Micromech. Microeng.
,
6
, pp.
310
319
.10.1088/0960-1317/6/3/003
13.
Zeng
,
S.
,
Chen
,
C. H.
,
Mikkelsen
,
J. C.
, and
Santiago
,
J. G.
,
2000
, “
Fabrication and Characterization of Electrokinetic Micro Pumps
,”
7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
CPMT/
IEEE
,
Las Vegas, NV
, Vol. 2, pp.
31
36
.10.1109/ITHERM.2000.866167
14.
Kilani
,
M.
,
Galambos
,
P.
,
Haik
,
Y.
, and
Chen
,
C. J.
,
2003
, “
Design and Analysis of a Surface Micromachined Spiral-Channel Viscous Pump
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
339
344
.10.1115/1.1524582
15.
Sen
,
M.
,
Wajerski
,
D.
, and
Gad-el-Hak
,
M.
,
1996
, “
A Novel Pump for MEMS Applications
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
624
627
.10.1115/1.2817807
16.
Ahn
,
C. H.
, and
Allen
,
M. G.
,
1995
, “
Fluid Micropumps Based on Rotary Magnetic Actuators
,” Proceedings of
MEMS
1995
, Jan. 29–Feb. 2, pp.
408
418
. 10.1109/MEMSYS.1995.472590
17.
Dopper
,
J.
,
Clemens
,
M.
,
Ehrfeld
,
W.
,
Jung
,
S.
,
Kamper
,
K.-P.
, and
Lehr
,
H.
,
1997
, “
Micro Gear Pumps for Dosing of Viscous Fluids
,”
J. Micromech. Microeng.
,
7
(
2
), pp.
230
232
.10.1088/0960-1317/7/3/040
18.
Mizoguchi
,
H.
,
Ando
,
M.
,
Mizuno
,
T.
,
Takagi
,
T.
, and
Nakajima
,
N.
,
1992
, “
Design and Fabrication of Light Driven Micropump
,” Proceedings of
MEMS
'92,
5th IEEE International Workshop MEMS
,
Germany
, Feb. 4–7, pp.
31
36
.10.1109/MEMSYS.1992.187686
19.
Grosjean
,
C.
, and
Tai
,
Y. C.
,
1999
, “
A Thermopneumatic Peristaltic Micropump
,”
Proceedings of Transducer’99, 10th International Conference on Solid State Sensors and Actuators
, Japan, June 7–10, pp.
1776
1779
.
20.
Cabuz
,
C.
,
Herb
,
W. R.
,
Cabuz
,
E. I.
, and
Lu
,
S. T.
,
2001
, “
The Dual Diaphragm Pump
,” Proceedings of
MEMS
'01,
14th IEEE International
Workshop MEMS, Switzerland, Jan. 21–25, pp.
519
522
.10.1109/MEMSYS.2001.906593
21.
Luginbuhl
,
P.
,
Collins
,
S. D.
,
Racine
,
G. A.
,
Gretillat
,
M. A.
,
de Rooij
,
N. F.
,
Brooks
,
K. G.
, and
Setter
,
N.
,
1997
, “
Flexural-Plate-Wave Actuators Based on PZT Thin Film
,”
Proceedings of
MEMS
'97, Jan. 26–30, pp.
327
332
.10.1109/MEMSYS.1997.581845
22.
Miyazaki
,
S.
,
Kawai
,
T.
, and
Araragi
,
M.
,
1991
, “
A Piezo-Electric Pump Driven by a Flexural Progressive Wave
,”
Proceedings of
MEMS
'91,
4th International Workshop
MEMS, Japan, Jan. 30–Feb. 2, pp.
283
288
.10.1109/MEMSYS.1991.114811
23.
Takagi
,
H.
,
Maeda
,
R.
,
Ozaki
,
K.
,
Parameswaran
,
M.
, and
Mehta
,
M.
,
1994
, “
Phase Transformation Type Micro Pump
,”
Proceedings of International Symposium on Micro Machine and Human Science
, Japan, Oct. 2–4,
IEEE
, pp.
199
202
.10.1109/ISMMHS.1994.512924
24.
Geng
,
X.
,
Yuan
,
H.
,
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
2001
, “
Bubble-Based Micropump for Electrically Conducting Liquids
,”
J. Micromech. Microeng.
,
11
, pp.
270
276
.10.1088/0960-1317/11/3/317
25.
Hatch
,
A.
,
Kamholz
,
A. E.
,
Holman
,
G.
,
Yager
,
P.
, and
Bohringer
,
K. F.
,
2001
, “
A Ferrofluidic Magnetic Micropump
,”
J. Microelectromech. Syst.
,
10
(
2
), pp.
215
221
.10.1109/84.925748
26.
Huang
,
L.
,
Wang
,
W.
,
Murphy
,
M. C.
,
Lian
,
K.
, and
Ling
,
Z. G.
,
2000
, “
LIGA Fabrication and Test of a DDC Type Magnetohydrodynamic (MHD) Micropump
,”
Microsyst. Technol.
,
6
, pp.
235
240
.10.1007/s005420000068
27.
Karniadakis
,
G. E.
, and
Beskok
,
A.
,
2002
,
Micro Flows, Fundamentals and Simulation
,
Springer
,
New York
, pp.
1
31
.
28.
Etsion
,
I.
, and
Yaier
,
R.
,
1988
, “
Performance Analysis of a New Concept Viscous Pump
,”
ASME J. Tribol.
,
110
(1)
, pp.
93
99
.10.1115/1.3261582
29.
Winoto
,
S. H.
, and
Yohanand
,
K.
,
1994
, “
Analysis and Test of a Viscous Pump With Radial Pumping Grooves
,”
Tribol. Trans.
,
37
(
4
), pp.
691
700
.10.1080/10402009408983348
30.
Arafa
,
H. A.
, and
Osman
,
T. A.
,
2003
, “
Hydrostatic Bearings With Multiport Viscous Pumps
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
217
, pp.
333
342
.10.1243/135065003768618678
31.
Sato
,
Y.
, and
Knight
,
J. D.
,
1992
, “
Performance Characteristics of Shrouded Rayleigh-Step and Spiral Groove Viscous Pumps
,”
ASME J. Tribol.
,
114
(3), pp.
499
503
.10.1115/1.2920911
32.
Elrod
,
H. G.
,
1973
, “
Some Refinements of the Theory of the Viscous Screw Pump
,”
ASME J. Lub. Tech.
,
95
(
1
), pp.
82
93
.10.1115/1.3451741
33.
Mainland
,
M.
, and
Green
,
I.
,
1992
, “
Analysis and Optimization of Semicircular and Straight Lobe Viscous Pumps
,”
ASME J. Tribol.
,
114
(
3
), pp.
515
521
.10.1115/1.2920913
34.
Hasinger
,
S. H.
, and
Kehrt
,
L. G.
,
1963
, “
Investigation of a Shear-Force Pump
,”
ASME J. Eng. Power
,
85
(3), pp.
201
206
.10.1115/1.3675258
35.
Sharatchandra
,
M. C.
,
Sen
,
M.
, and
Gad-el-Hak
,
M.
,
1997
, “
Navier–Stokes Simulations of a Novel Viscous Pump
,”
ASME J. Fluids Eng.
,
119
(2), pp.
372
382
.10.1115/1.2819144
36.
Blanchard
,
D.
,
Ligrani
,
P. M.
, and
Gale
,
B.
,
2004
, “
Rotary Centrifugal and Viscous Micropumps
,” U.S. Patent Office, Application No. PCT\US2004\028890 (submitted September 3, 2006).
37.
Blanchard
,
D.
,
Ligrani
,
P. M.
, and
Gale
,
B.
,
2006
, “
Miniature Single-Disk Viscous Pump (Single-DVP), Performance Characterization
,”
ASME J. Fluids Eng.
,
128
(3), pp.
602
610
.10.1115/1.2175167
38.
da Silva
,
A. K.
,
Kobayashi
,
M. H.
, and
Coimbra
,
C. F. M.
,
2007
, “
Optimal Design of Non-Newtonian, Micro-Scale Viscous Pumps for Biomedical Devices
,”
J. Biotechnol. Bioeng.
,
96
(
1
), pp.
37
47
.10.1002/bit.21165
39.
El-Sadi
,
H.
,
Esmail
,
N.
, and
Hassan
,
I.
,
2008
, “
Numerical Modeling of Non-Newtonian Flow in Viscous Micropump
,”
J. Soc. Rheol.
, Jpn.,
36
(
1
), pp.
51
58
.10.1678/rheology.36.51
40.
Bogue
,
D. C.
, and
Metzner
,
A. B.
,
1963
, “
Velocity Profiles in Turbulent Pipe Flow. Newtonian and Non-Newtonian Fluids
,”
J. Ind. Eng. Chem. Fundamentals
,
2
(
2
), pp.
143
149
.10.1021/i160006a010
41.
Bereiziat
,
D.
, and
Devienne
,
R.
,
1999
, “
Experimental Characterization of Newtonian and Non-Newtonian Fluid Flows in Corrugated Channels
,”
Int. J. Eng. Sci.
,
37
(
11
), pp.
1461
1479
.10.1016/S0020-7225(98)00126-8
42.
Flumerfelt
,
R. W.
,
Pierick
,
M. W.
,
Cooper
,
S. L.
, and
Bird
,
R. B.
,
1969
, “
Generalized Plane Couette Flow of a Non-Newtonian Fluid
,”
J. Ind. Eng. Chem. Fundamentals
,
8
(
2
), pp.
354
357
.10.1021/i160030a028
43.
Asadi
,
M.
,
2007
,
Beet-Sugar Handbook
,
John Wiley & Sons, Inc.
,
Hoboken
, NJ, pp.
33
40
, 49–50.
44.
Swindells
,
J. F.
,
Snyder
,
C. F.
,
Hardy
,
R. C.
, and
Golden
,
P. E.
,
1958
, “
Viscosities of Sucrose Solutions at Various Temperatures: Tables of Recalculated Values
,” National Bureau of Standards Circular 440, pp.
4
7
.
45.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(2), pp.
250
258
.10.1115/1.3241818
You do not currently have access to this content.