Losses in a flow through conduit components of a pipe system can be accounted for by head loss coefficients K. They can either be determined experimentally or from numerical solutions of the flow field. The physical interpretation is straight forward when these losses are related to the entropy generation in the flow field. This can be done based on the numerical solutions by the second law analysis (SLA) successfully applied for steady flows in the past. This analysis here is extended to unsteady laminar flow, exemplified by a periodic pulsating mass flow rate with the pulsation amplitude and the frequency as crucial parameters. First the numerical model is validated by comparing it to results for unsteady laminar pipe flow with analytical solutions for this case. Then K-values are determined for the benchmark case of a 90 deg bend with a square cross section which is well-documented for the steady case already. It turns out that time averaged values of K may significantly deviate from the corresponding steady values. The K-values determined for steady flow are a good approximation for the time-averaged values in the unsteady case only for small frequencies and small amplitudes.

References

1.
Idelchik
,
I.
,
2007
,
Handbook of Hydraulic Resistance
,
Begell House, Inc.
,
Redding, CT
.
2.
Miller
,
D. S.
,
1978
,
Internal Flow Systems
, 2nd ed.,
BHRA
,
Bedford, UK
.
3.
Ward-Smith
,
A. J.
,
1980
,
Internal Fluid Flow
,
Clarendon Press
,
Oxford, UK
.
4.
VDI
,
2006
,
VDI-Wärmeatlas
, 10 ed.,
Springer-Verlag
,
Berlin
.
5.
Schmandt
,
B.
, and
Herwig
,
H.
,
2011
, “
Internal Flow Losses: A Fresh Look at Old Concepts
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051201
.10.1115/1.4003857
6.
Schmandt
,
B.
, and
Herwig
,
H.
,
2012
, “
A Standard Method to Determine Loss Coefficients of Conduit Components Based on the Second Law of Thermodynamics
,”
ASME Conference Proceedings
, Paper No. ICNMM2012-73249.
7.
Ünsal
,
B.
,
2008
, “
Time-Dependent Laminar, Transitional and Turbulent Pipe Flows
,” Ph.D. thesis,
Universiät Erlangen-Nürnberg
,
Nürnberg, Germany
.
8.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1996
, “
The Friction Coefficient of a Fully Developed Laminar Reciprocating Flow in a Circular Pipe
,”
Int. J. Heat Fluid Flow
,
17
, pp.
167
172
.10.1016/0142-727X(96)00001-X
9.
Ribas
,
F. A.
, and
Deschamps
,
C. J.
,
2004
, “
Friction Factor Under Transient Flow Condition
,”
Proceedings of the International Compressor Engineering Conference
.
10.
Munson
,
B.
,
Young
,
D.
, and
Okiishi
,
T.
,
2005
,
Fundamentals of Fluid Mechanics
, 5th ed.,
John Wiley & Sons, Inc.
,
New York
.
11.
Moody
,
L.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, pp.
671
684
.
12.
Herwig
,
H.
,
2012
, “
The Role of Entropy Generation in Momentum and Heat Transfer
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031003
.10.1115/1.4005128
13.
Ünsal
,
B.
,
Ray
,
S.
,
Durst
,
F.
, and
Ertunç
,
Ö.
,
2005
, “
Pulsating Laminar Pipe Flows With Sinusoidal Mass Flux Variations
,”
Fluid Dyn. Res.
,
37
(
5
), pp.
317
333
.10.1016/j.fluiddyn.2005.06.002
14.
Herwig
,
H.
,
Schmandt
,
B.
, and
Uth
,
M.-F.
,
2010
, “
Loss Coefficients in Laminar Flows: Indispensable for the Design of Micro Flow Systems
,”
ASME Conf. Proc.
,
2010
(
54501
), pp.
1517
1528
.10.1115/FEDSM-ICNMM2010-30166
You do not currently have access to this content.