The interface area increase produced by large-amplitude wave refraction through an interface that separates fluids with different densities can have important physiochemical consequences, such as a fuel consumption rate increase in the case of a shock–flame interaction. Using the results of numerical simulations along with a scaling analysis, a unified scaling law of the interface length increase was developed applicable to shock and expansion wave refractions and both types of interface orientation with the respect to the incoming wave. To avoid a common difficulty in interface length quantification in the numerical tests, a sinusoidally perturbed interface was generated using gases with different temperatures. It was found that the rate of interface increase correlates almost linearly with the circulation deposited at the interface. When combined with earlier developed models of circulation deposition in Richtmyer–Meshkov instability, the obtained scaling law predicts dependence of interface dynamics on the basic problem parameters.

References

References
1.
Rupert
,
V.
,
1991
, “
Shock-Interface Interaction: Current Research on the Richtmyer–Meshkov Problem
,” Proceedings of the 18th International Symposium on Shock Waves, Sendai, Japan.
2.
Brouillette
,
M.
,
2002
, “
The Richtmyer–Meshkov Instability
,”
Ann. Rev. Fluid Mech.
,
34
, pp.
445
468
.10.1146/annurev.fluid.34.090101.162238
3.
Zabusky
,
N.
,
1999
, “
Vortex Paradigm for Accelerated Inhomogeneous Flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov Environments
,”
Ann. Rev. Fluid Mech.
,
31
, pp.
495
536
.10.1146/annurev.fluid.31.1.495
4.
Matsuoka
,
C.
,
Nashihara
,
K.
, and
Fukuda
,
Y.
,
2003
, “
Nonlinear Evolution of an Interface in the Richmyer–Meshkov Instability
,”
Phys. Rev. E.
,
67
, p.
036301
.10.1103/PhysRevE.67.036301
5.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
, pp.
297
319
.10.1002/cpa.3160130207
6.
Markstein
,
G. H.
,
1964
,
Nonsteady Flame Propagation
,
MacMillan
,
New York
.
7.
Hasegawa
,
T.
,
Morooka
,
T.
, and
Nishiki
,
S.
,
2000
, “
Mechanism of Interaction Between a Vortex Pair and a Premixed Flame
,”
Combust. Sci. Technol.
,
150
(
1–6
), pp.
115
142
.10.1080/00102200008952120
8.
Scarinci
,
T.
,
Lee
,
J. H.
,
Thomas
,
G. O.
,
Bambrey
,
R.
, and
Edwards
,
D. H.
,
1991
, “
Amplification of a Pressure Wave by Its Passage Through a Flame Front
,”
Proceedings of the 13th International Colloquium on the Dynamics of Explosions and Reactive Systems
, Nagoya, Japan, pp.
3
24
.
9.
Khokhlov
,
A.
,
Oran
,
E. S.
,
Chtchelkanova
,
A. Y.
, and
Wheeler
,
J. C.
,
1999
, “
Interaction of a Shock With a Sinusoidally Perturbed Flame
,”
Combust. Flame
,
117
(
1–2
), pp.
99
116
.10.1016/S0010-2180(98)00090-X
10.
Ming-Shin
,
W.
, and
Driscoll
,
J. F.
,
1992
, “
Numerical Simulation of a Vortex Convected Through a Laminar Premixed Flame
,”
Combust. Flame
,
91
(
3–4
), pp.
310
322
.10.1016/0010-2180(92)90060-3
11.
Li
,
C.
, and
Book
,
D. L.
,
1991
, “
Rayleigh–Taylor Instability Generated by Rarefaction Waves: Comparison With Richtmyer–Meshkov Instability
,” Proceedings of the 18th International Symposium, Sendai, Japan, July 21–26, pp.
313
318
.
12.
Li
,
D.
,
Sankaran
,
V.
,
Fakhari
,
K.
, and
Merkle
,
C.
,
2001
, “
Convergence Assessment of General Fluid Equations on Unstructured Hybrid Grids
,” Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, AIAA, Paper No. 2001-2557.
13.
Sankaran
,
V.
, and
Merkle
,
C. L.
,
2003
, “
Artificial Dissipation Control for Unsteady Computations
,” Proceedings of the 16th
AIAA
Computational Fluid Dynamics Conference, Orlando, FL.10.2514/6.2003-3695
14.
Li
,
D.
,
Xia
,
G.
, and
Merkle
,
C. L.
,
2003
, “
Analysis of Real Fluid Flows in Converging Diverging Nozzles
,” Proceedings of the 33rd AIAA Fluid Dynamics Conference, Orlando, FL,
AIAA
, Paper No. 2003-4132.10.2514/6.2003-4132
15.
Kilchyk
,
V.
,
Nalim
,
R.
, and
Merkle
,
C.
,
2010
, “
Baroclinic Vorticity Production by Shocks and Expansion Waves
,”
J. Shock Waves
,
20
(
5
), pp.
367
380
.10.1007/s00193-010-0277-8
16.
Barth
,
T. J.
, and
Jespersen
,
D. C.
,
1989
, “
The Design of Application of Upwind Schemes on Unstructured Grids
,” AIAA, Paper No. AIAA-89-0366.
17.
Gülder
,
O.
, and
Smallwood
,
G. J.
,
1995
, “
Inner Cutoff Scale of Flame Surface Wrinkling in Turbulent Premixed Flames
,”
Combust. Flame
,
103
, pp.
107
114
.10.1016/0010-2180(95)00073-F
18.
Lim
,
H.
,
Yu
,
Y.
,
Glimm
,
J.
,
Li
,
X. L.
, and
Sharp
,
D. H.
,
2008
, “
Chaos, Transport and Mesh Convergence for Fluid Mixing
,”
Acta Math. Appl. Sin.
,
24
, pp.
355
368
.10.1007/s10255-008-8019-8
19.
Dong
,
G.
,
Fan
,
B.
, and
Ye
,
J.
,
2008
, “
Numerical Investigation of Ethylene Flame Bubble Instability Induced by Shock Waves
,”
Shock Waves
,
17
(
6
), pp.
409
419
.10.1007/s00193-008-0124-3
20.
Kilchyk
,
V.
,
Nalima
,
R.
, and
Merkle
,
C.
,
2011
, “
Laminar Premixed Flame Fuel Consumption Rate Modulation by Shocks and Expansion Waves
,”
Combust. Flame
,
158
(
6
), pp.
1140
1148
.10.1016/j.combustflame.2010.10.026
21.
Akbari
,
P.
, and
Nalim
,
M. R.
,
2009
, “
Review of Recent Developments in Wave Rotor Combustion Technology
,”
AIAA J. Propul. Power
,
25
(
4
), pp.
833
844
.10.2514/1.34081
22.
Samtaney
,
R.
, and
Zabusky
,
N.
,
1993
, “
On Shock Polar Analysis and Analytical Expressions for Vorticity Deposition in Shock-Accelerated Density-Stratified Interfaces
,”
Phys. Fluids A
,
5
(
6
), pp.
1285
1287
.10.1063/1.858618
23.
Samtaney
,
R.
,
Ray
,
J.
, and
Zabusky
,
N.
,
1998
, “
Baroclinic Circulation Generation on Shock Accelerated Slow/Fast Gas Interfaces
,”
Phys. Fluids
,
10
(
5
), pp.
1271
1285
.10.1063/1.869649
24.
Zucrow
,
M. J.
, and
Hoffman
,
J. D.
,
1976
,
Gas Dynamics
, Vol. 1,
John Wiley & Sons
,
New York
.
25.
Sadot
,
O.
,
Erez
,
L.
,
Alon
,
U.
,
Oron
,
D.
,
Levin
,
L. A.
,
Erez
,
G.
,
Ben-Dor
,
G.
, and
Shvarts
,
D.
,
1998
, “
Study of Nonlinear Evolution of Single-Mode and Two-Bubble Interaction Under Richtmyer–Meshkov Instability
,”
Phys. Rev. Lett.
,
80
, pp.
1654
1657
.10.1103/PhysRevLett.80.1654
26.
Peng
,
G.-Z.
,
Zabusky
,
N. J.
, and
Zhang
,
S.
,
2003
, “
Vortex-Accelerated Secondary Baroclinic Vorticity Deposition and Late Intermediate Time Dynamics of a Two-Dimensional Richtmyer–Meshkov Interface
,”
Phys. Fluids
,
15
(
12
), pp.
3730
3744
.10.1063/1.1621628
27.
Jacobs
,
J. W.
, and
Sheeley
,
J. M.
,
1996
, “
Experimental Study of Incompressible Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
8
, pp.
405
416
.10.1063/1.868794
28.
Saffman
,
P. G.
,
1992
,
Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics
,
Cambridge University Press
,
Cambridge, UK
.
29.
Howe
,
M. S.
,
2007
,
Hydrodynamics and Sound
,
Cambridge University Press
,
Cambridge, UK
.
30.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
R.T.
Edwards
, Inc.,
Philadelphia, PA
.
You do not currently have access to this content.