A numerical study of compressible jet flows is carried out using Reynolds averaged Navier–Stokes (RANS) turbulence models such as k-ɛ and k-ω-SST. An experimental investigation is performed concurrently using high-speed optical methods such as Schlieren photography and shadowgraphy. Numerical and experimental studies are carried out for the compressible impinging at various impinging angles and nozzle-to-wall distances. The results from both investigations converge remarkably well and agree with experimental data from the open literature. From the flow visualizations of the velocity fields, the RANS simulations accurately model the shock structures within the core jet region. The first shock cell is found to be constraint due to the interaction with the bow-shock structure for nozzle-to-wall distance less than 1.5 nozzle diameter. The results from the current study show that the RANS models utilized are suitable to simulate compressible free jets and impinging jet flows with varying impinging angles.

References

References
1.
Behnia
,
M.
,
Ooi
,
A.
, and
Gregory
,
P.
,
2005
, “
Prediction of Turbulent Heat Transfer in Impinging Jet Geometries
,” Modelling and Simulation of Turbulent Heat Transfer, Vol. 16, WIT Press, Southampton, UK, pp.
147
175
.
2.
Chung
,
Y. M.
,
Luo
,
K. H.
, and
Sandham
,
N. D.
,
2002
, “
Numerical Study of Momentum and Heat Transfer in Unsteady Impinging Jets
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
592
600
.10.1016/S0142-727X(02)00155-8
3.
Grujicic
,
M.
,
Zhao
,
C. L. C.
,
Tong
,
W. S. D.
, and
Helfritch
,
D.
,
2004
, “
Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process
,”
Mater. Sci. Eng. A
,
368
(
1–2
), pp.
222
230
.10.1016/j.msea.2003.10.312
4.
Irissou
,
E.
,
Legoux
,
J. G.
,
Ryabinin
,
A. N.
,
Jodoin
,
B.
, and
Moreau
,
C.
,
2008
, “
Review on Cold Spray Process and Technology: Part I—Intellectual Property
,”
J. Therm. Spray Technol.
,
17
(
4
), pp.
495
516
.10.1007/s11666-008-9203-3
5.
Groover
,
M. P.
,
2007
, “
Coating and Deposition Processes: Thermal and Mechanical Coating Processes
,”
Fundamentals of Modern Manufacturing
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
, pp.
684
686
.
6.
Grujicic
,
M.
,
Tong
,
C.
,
DeRosset
,
W.
, and
Helfritch
,
D.
,
2003
, “
Flow Analysis and Nozzle-Shape Optimization for the Cold-Gas Dynamic-Spray Process
,”
Proc. Inst. Mech. Eng., Part B (J. Eng. Manufact.).
,
217
(
11
), pp.
1603
1613
.10.1243/095440503771909980
7.
Rahimi
,
M.
,
Owen
,
I.
, and
Mistry
,
J.
,
2003
, “
Impingement Heat Transfer in an Under-Expanded Axisymmetric Air Jet
,”
Int. J. Heat Mass Transfer
,
46
, pp.
263
272
.10.1016/S0017-9310(02)00275-2
8.
Troutt
,
T. R.
, and
McLaughlin
,
D. K.
,
1982
, “
Experiments on the Flow and Acoustic Properties of a Moderate-Reynolds Number Supersonic Jet
,”
J. Fluid Mech.
,
116
, pp.
123
156
.10.1017/S0022112082000408
9.
Krothapalli
,
A.
,
Rajkuperan
,
E.
,
Alvi
,
F.
, and
Lourenco
,
L.
,
1999
, “
Flow Field and Noise Characteristics of a Supersonic Impinging Jet
,”
J. Fluid Mech.
,
392
, pp.
155
181
.10.1017/S0022112099005406
10.
Yuceil
,
K.
,
Otugen
,
M.
, and
Arik
,
E.
,
2000
, “
Underexpanded Sonic Jets: A PIV Study
,”
Proceedings of the 10th International Symposium on the Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
.
11.
Alvi
,
F.
,
Shih
,
C.
,
Elavarasan
,
R.
, and
Krothapalli
,
A.
,
2003
, “
Control of Supersonic Impinging Jet Flows Using Supersonic Microjets
,”
AIAA J.
,
41
(
7
), pp.
1347
1355
.10.2514/2.2080
12.
Mitchell
,
K.
,
Honnery
,
D.
, and
Soria
,
J.
,
2005
, “
Particle Image Velocimetry Measurements of an Under-Expanded Supersonic Jet
,”
Proceedings of the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion
,
McLaren Vale, Australia
, pp.
109
112
.
13.
Mitchell
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2009
, “
The Influence of Shockwave Induced Velocity Gradients on the Correlation Function
,”
Proceedings of the 8th International Symposium on Particle Image Velocimetry
,
Monash University
,
Melbourne, Australia
,
Aug. 25–28
, pp.
673
676
.
14.
Khashehchi
,
M.
,
Ooi
,
A.
,
Soria
,
J.
, and
Marusic
,
I.
,
2010
, “
Evolution of the Turbulent/Non-Turbulent Interface of an Axisymmetric Turbulent Jet
,”
Proceedings of the American Physical Society, 63rd Annual Meeting of the APS Division of Fluid Dynamics
.
15.
Mitchell
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2011
, “
Particle Relaxation and Its Influence on the Particle Image Velocimetry Cross-Correlation Function
,”
Exp. Fluids
,
51
(
4
), pp.
933
947
.10.1007/s00348-011-1116-0
16.
Panda
,
J.
, and
Seasholtz
,
R. G.
,
1999
, “
Measurement of Shock Structure and Shock Vortex Interaction in Under-Expanded Jets Using Rayleigh Scattering
,”
Phys. Fluids
,
11
(
12
), pp.
3761
3777
.10.1063/1.870247
17.
Donaldson
,
C. D.
, and
Snedeker
,
R. S.
,
1971
, “
A Study of Free Jet Impingement. Part 1. Mean Properties of Free and Impinging Jets
,”
J. Fluid Mech.
,
45
(
2
), pp.
281
319
.10.1017/S0022112071000053
18.
Yaga
,
M.
,
Ueda
,
K.
, and
Ohshiro
,
T.
,
2000
, “
Experimental and Three-Dimensional Numerical Study on Under-Expanded Impinging Jets
,”
J. Therm. Sci.
,
9
(
4
), pp.
316
321
.10.1007/s11630-000-0070-6
19.
Yaga
,
M.
,
Okano
,
M.
,
Tamashiro
,
M.
, and
Oyakawa
,
K.
,
2003
, “
Experimental and Numerical Study of Twin Under-Expanded Impinging Jets
,”
J. Therm. Sci.
,
12
(
3
), pp.
255
259
.10.1007/s11630-003-0078-9
20.
Risborg
,
A.
,
Mitchell
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2008
, “
Instabilities in Under-Expanded Impinging Jets
,”
Proceedings of the 5th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, The University of Western Australia
,
Crawley, Australia
.
21.
Kalghatgi
,
G. T.
, and
Hunt
,
B. L.
,
1976
, “
The Occurrence of Stagnation Bubbles in Supersonic Jet Impingement Flows
,”
Aeronaut. Q.
,
27
(
3
), pp.
169
185
.
22.
Hutchins
,
N.
,
Nickels
,
T. B.
,
Marusic
,
I.
, and
Chong
,
M. S.
,
2009
, “
Hot-Wire Spatial Resolution Issues in Wall-Bounded Turbulence
,”
J. Fluid Mech.
,
635
, pp.
103
136
.10.1017/S0022112009007721
23.
Chin
,
C.
,
Hutchins
,
N.
,
Ooi
,
A. S. H.
, and
Marusic
,
I.
,
2009
, “
Use of Direct Numerical Simulation (DNS) Data to Investigate Spatial Resolution Issue in Measurements of Wall-Bounded Turbulence
,”
Meas. Sci. Technol.
,
20
, p.
115401
.10.1088/0957-0233/20/11/115401
24.
Elavarasan
,
R.
,
Krothapalli
,
A.
,
Venkatakrishnan
,
L.
, and
Lourenco
,
L.
,
2001
, “
Supression of Self-Sustained Oscillations in a Supersonic Impinging Jet
,”
AIAA J.
,
39
(
12
), pp.
2366
2373
.10.2514/2.1243
25.
Moin
,
P.
,
2010
,
Fundamentals of Engineering Numerical Analysis
,
Cambridge University Press
,
Cambridge, UK
.
26.
Dykhuizen
,
R. C.
, and
Smith
,
M. F.
,
1998
, “
Gas Dynamic Principles of Cold Spray
,”
J. Therm. Spray Technol.
,
7
(
2
), pp.
205
212
.10.1361/105996398770350945
27.
Kosarev
,
V. F.
,
Klinkov
,
S. V.
,
Alkhimov
,
A. P.
, and
Papyrin
,
A. N.
,
2003
, “
On Some Aspects of Gas Dynamics of the Cold Spray Process
,”
J. Therm. Spray Technol.
,
12
(
2
), pp.
265
281
.10.1361/105996303770348384
28.
Jen
,
T. C.
,
Li
,
L.
,
Cui
,
W.
,
Chen
,
Q.
, and
Zhang
,
X.
,
2005
, “
Numerical Investigations on Cold Gas Dynamic Spray Process With Nano- and Microsize Particles
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4384
4396
.10.1016/j.ijheatmasstransfer.2005.05.008
29.
Samareh
,
B.
,
Stier
,
O.
,
Lüthen
,
V.
, and
Dolatabadi
,
A.
,
2009
, “
Assessment of CFD Modeling via Flow Visualization in Cold Spray Process
,”
J. Therm. Spray Technol.
,
18
(
5–6
), pp.
934
943
.10.1007/s11666-009-9363-9
30.
Iwamoto
,
J.
,
1990
, “
Impingement of Under-Expanded Jets on a Flat Plate
,”
ASME J. Fluids Eng.
,
112
(2)
, pp.
179
184
.10.1115/1.2909385
31.
Cumber
,
P.
,
Fairweather
,
M.
,
Falle
,
S.
, and
Giddings
,
J.
,
1997
, “
Predictions of Impacting Sonic and Supersonic Jets
,”
ASME J. Fluids Eng.
,
119
(1)
, pp.
83
89
.10.1115/1.2819123
32.
Risborg
,
A.
, and
Soria
,
J.
,
2009
, “
High-Speed Optical Measurements of an Underexpanded Supersonic Jet Impinging on an Inclined Plate
,”
Proceedings of the 28th International Congress on High-Speed Imaging and Photonics
,
Canberra, Australia
,
SPIE
, Bellingham, WA.10.1117/12.822137
33.
Treleaven
,
N.
,
Toh
,
C.
,
Buchmann
,
N.
, and
Soria
,
J.
,
2011
, “
Flow and Density Measurement of a Subsonic Axisymmetric Jet
,”
Proceedings of the 9th Australasian Heat and Mass Transfer Conference, Monash University
,
Melbourne, Australia
.
34.
Toh
,
C.
,
Treleaven
,
N.
,
Buchmann
,
N.
, and
Soria
,
J.
,
2011
, “
Density Measurements in Supersonic Gas Jet Flow
,”
Proceedings of the 9th Australasian Heat and Mass Transfer Conference, Monash University
,
Melbourne, Australia
.
35.
Willert
,
C.
,
Mitchell
,
D.
, and
Soria
,
J.
,
2010
, “
Megahertz Rate Schlieren Visualization of Under-Expanded, Impinging jet Using Pulsed High Power LED
,”
Bull. Am. Phys. Soc.
,
55
, APS-DFD Meeting.
36.
Willert
,
C.
,
Mitchell
,
D.
, and
Soria
,
J.
,
2010
, “
Megahertz Schlieren Imaging of Shock Structure and Sound Waves in Under-Expanded, Impinging Jets
,”
Proceedings of the 63rd Annual APS-DFD Meeting
,
Long Beach, CA
.
37.
Mitchell
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2011
, “
The Visualization of the Acoustic Feedback Loop in Impinging Under-Expanded Supersonic Jet Flows Using Ultra-High Frame Rate Schlieren
,”
Bull. Am. Phys. Soc.
,
56
, APS-DFD Meeting.
38.
Buchmann
,
N.
,
Mitchell
,
D. M.
,
Ingvorsen
,
K.
,
Honnery
,
D.
, and
Soria
,
J.
,
2011
, “
High Spatial Resolution Imaging of a Supersonic Under-Expanding Jet Impinging on a Flat Plate
,”
Proceedings of the 6th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion
,
Canberra, Australia
.
39.
Settles
,
G.
,
2001
,
Schlieren and Shadowgraph Techniques. Experimental Fluid Mechanics
,
Springer-Verlag
,
Berlin
.
40.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London.
41.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Prediction
,”
Proceedings of the 16th Brazilian Congress of Mechanical Engineering (COBEM)
,
Sao Paolo, Brazil
.
42.
Schiestel
,
R.
,
2008
,
Modeling and Simulation of Turbulent Flows
,
ISTE
,
London
.
43.
Wilcox
,
D. C.
,
1998
,
Turbulence Modelling for CFD
,
DCW Industries
,
La Canada, CA
.
44.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
45.
Catalano
,
P.
, and
Amato
,
M.
,
2003
, “
An Evaluation of RANS Turbulence Modelling for Aerodynamic Applications
,”
Aerosp. Sci. Technol.
,
7
(
7
), pp.
493
509
.10.1016/S1270-9638(03)00061-0
46.
Zingg
,
D. W.
, and
Godin
,
P.
,
2009
, “
A Perspective on Turbulence Models for Aerodynamic Flows
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
327
335
.10.1080/10618560902776802
47.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Launder
,
B. E.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment–II. An Examination of the Performance of Four Turbulence Models
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2685
2697
.10.1016/S0017-9310(05)80205-4
48.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
14
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
49.
Sinha
,
K.
,
Mahmesh
,
K.
, and
Candler
,
G. V.
,
2003
, “
Modeling Shock Unsteadiness in Shock/Turbulence Interaction
,”
Phys. Fluids
,
15
(
8
), pp.
2290
2297
.10.1063/1.1588306
50.
Lamont
,
P.
, and
Hunt
,
B.
,
1980
, “
The Impingement of Under-Expanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates
,”
J. Fluid Mech.
,
100
(
3
), pp.
471
511
.10.1017/S0022112080001255
You do not currently have access to this content.