In this numerical study, flow-induced vibrations of a heated elastically supported cylinder in a laminar flow with Re = 200 and Pr = 0.7 are simulated using the moving overset grids method. This work is carried out for a wide range of natural frequencies of the cylinder, while for all cases mass ratio and reduced damping coefficient, respectively, are set to 1 and 0.01. Here we study lock-in condition and its effects on force coefficients, the amplitude of oscillations, vortex shedding pattern, and Nusselt number and simultaneously investigate the effect of in-line oscillations of the cylinder on these parameters. Results show that for this cylinder, soft lock-in occurs for a range of natural frequencies and parameters like Nusselt number, and the amplitude of oscillation reach their maximum values in this range. In addition, this study shows that in-line oscillations of the cylinder have an important effect on its dynamic and thermal behavior, and one-degree-of-freedom simulation, for an elastic cylinder, which can vibrate freely in a flow field, is only valid for cases far from soft lock-in range.

References

References
1.
Feng
,
C. C.
,
1968
, “
The Measurement of Vortex-Induced Effects in Flow Past Stationary and Oscillating Circular and D-Section Cylinders
,” M.Sc. thesis, University of British Columbia, Vancouver, BC, Canada.
2.
Griffin
,
O. M.
, and
Ramberg
,
S.
,
1974
, “
The Vortex-Street Wakes of Vibrating Cylinders
,”
J. Fluid Mech.
,
66
, pp.
553
576
.10.1017/S002211207400036X
3.
Griffin
,
O. M.
, and
Koopman
,
G. H.
,
1977
, “
The Vortex–Excited Lift and Reaction Forces on Resonantly Vibrating Cylinders
,”
J. Sound Vib.
,
54
, pp.
435
448
.10.1016/0022-460X(77)90451-5
4.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1996
, “
Dynamics of a Hydro-Elastic Cylinder With Very Low Mass and Damping
,”
J. Fluids Struct.
,
10
, pp.
455
472
.10.1006/jfls.1996.0031
5.
Raghavan
,
K.
, and
Bernitsas
,
M. M.
,
2011
, “
Experimental Investigation of Reynolds Number Effect on Vortex-Induced Vibration of Rigid Circular Cylinder on Elastic Supports
,”
Ocean Eng.
,
38
, pp.
719
731
.10.1016/j.oceaneng.2010.09.003
6.
Mittal
,
S.
, and
Kumar
,
V.
,
1999
, “
Finite Element Study of Vortex-Induced Cross-Flow and In-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
31
, pp.
1087
1120
.10.1002/(SICI)1097-0363(19991215)31:7<1087::AID-FLD911>3.0.CO;2-C
7.
Zhou
,
C. Y.
,
So
,
R. M.
, and
Lam
,
K.
,
1999
, “
Vortex-Induced Vibrations of an Elastic Circular Cylinder
,”
J. Fluids Struct.
,
13
, pp.
165
189
.10.1006/jfls.1998.0195
8.
Shiels
,
D.
,
Leonard
,
A.
, and
Roshko
,
A.
,
2001
, “
Flow-Induced Vibration of a Circular Cylinder at Limiting Structural Parameters
,”
J. Fluids Struct.
,
15
, pp.
3
21
.10.1006/jfls.2000.0330
9.
Placzek
,
A.
,
Sigrist
,
J.
, and
Hamdouni
,
A.
,
2009
, “
Numerical Simulation of an Oscillating Cylinder in a Cross-Flow at Low Reynolds Number: Forced and Free Oscillations
,”
Comput. Fluids
,
38
, pp.
80
100
.10.1016/j.compfluid.2008.01.007
10.
Camassa
,
R.
,
Chung
,
B. J.
,
Howard
,
P.
,
McLaughlin
,
R.
, and
Vaidya
,
A.
,
2010
, “
Vortex Induced Oscillations of Cylinders at Low and Intermediate Reynolds Numbers
,”
Advances in Mathematical Fluid Mechanics
,
R.
Rannacher
and
A.
Sequeira
, eds.,
Springer
,
New York
, pp.
135
145
.
11.
Zhao
,
M.
,
Cheng
,
L.
, and
An
,
H.
,
2012
, “
Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder in Transverse Direction in Oscillatory Flow
,”
Ocean Eng.
,
41
, pp.
39
52
.10.1016/j.oceaneng.2011.12.017
12.
Chen
,
W. L.
, and
Xu
,
F.
,
2012
, “
Investigation of a Hybrid Approach Combining Experimental Tests and Numerical Simulations to Study Vortex-Induced Vibration in a Circular Cylinder
,”
J. Sound Vib.
,
331
(
5
), pp.
1164
1182
.10.1016/j.jsv.2011.10.016
13.
Bahmani
,
M. H.
, and
Akbari
,
M. H.
,
2011
, “
Response Characteristics of a Vortex-Excited Circular Cylinder in Laminar Flow
,”
J. Mech. Sci. Technol.
,
25
(
1
), pp.
125
133
.10.1007/s12206-010-1021-0
14.
Bunge
,
U.
,
Gurr
,
A.
, and
Thiele
,
F.
,
2003
, “
Numerical Aspects of Simulating the Flow-Induced Oscillations of a Rectangular Bluff Body
,”
J. Fluids Struct.
,
18
(
3–4
), pp.
405
424
.10.1016/j.jfluidstructs.2003.07.007
15.
Sen
,
S.
, and
Mittal
,
S.
,
2011
, “
Free Vibration of a Square Cylinder at Low Reynolds Numbers
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
875
884
.10.1016/j.jfluidstructs.2011.03.006
16.
Leung
,
C. T.
,
Ko
,
N. W. M.
, and
Ma
,
K. H.
,
1981
, “
Heat Transfer From a Vibrating Cylinder
,”
J. Sound Vib.
,
75
(
4
), pp.
581
582
.10.1016/0022-460X(81)90445-4
17.
Cheng
,
C. H.
,
Chen
,
H. N.
, and
Aung
,
W.
,
1997
, “
Experimental Study of the Effect of Transverse Oscillation on Convection Heat Transfer From a Circular Cylinder
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
474
482
.10.1115/1.2824121
18.
Pottebaum
,
T.
, and
Gharib
,
M.
,
2006
, “
Using Oscillations to Enhance Heat Transfer for a Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3190
3210
.10.1016/j.ijheatmasstransfer.2006.01.037
19.
Karanth
,
D.
,
Rankin
,
G. W.
, and
Sridhar
,
K.
,
1994
, “
A Finite Difference Calculation of Forced Convective Heat Transfer From an Oscillating Cylinder
,”
Int. J. Heat Mass Transfer
,
37
, pp.
1619
1630
.10.1016/0017-9310(94)90177-5
20.
Fu
,
W. S.
, and
Tong
,
B. H.
,
2002
, “
Numerical Investigation of Heat Transfer From a Heated Oscillating Cylinder in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3033
3043
.10.1016/S0017-9310(02)00016-9
21.
Zhang
,
N.
,
Zheng
,
Z. C.
, and
Eckels
,
S.
,
2008
, “
Study of Heat Transfer on the Surface of a Circular Cylinder in Flow Using an Immersed-Boundary Method
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1558
1566
.10.1016/j.ijheatfluidflow.2008.08.009
22.
Nobari
,
M. R. H.
, and
Ghazanfarian
,
J.
,
2010
, “
Convective Heat Transfer From a Rotating Cylinder With Inline Oscillation
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
2026
2036
.10.1016/j.ijthermalsci.2010.05.006
23.
Su
,
Y. C.
,
Ge
,
P. Q.
, and
Yan
,
K.
,
2011
, “
Numerical Analysis on Heat Transfer and Flow-Induced Vibration of an Elastically Supported Cylinder
,”
Mater. Sci. Forum
,
697–698
, pp.
585
589
10.4028/www.scientific.net/MSF.697-698.585.
24.
Nirschl
,
H.
,
Dwyer
,
H. A.
, and
Denk
,
V.
,
1995
, “
Three-Dimensional Calculations of the Simple Shear Flow Around a Single Particle Between Two Moving Walls
,”
J. Fluid Mech.
,
283
, pp.
273
285
.10.1017/S002211209500231X
25.
Tuncer
,
H.
,
1997
, “
Two-Dimensional Unsteady Navier-Stokes Solution Method With Moving Overset Grids
,”
AIAA J.
,
35
(
3
), pp.
471
476
.10.2514/2.153
26.
Wehr
,
D.
,
Stangl
,
R.
, and
Wagner
,
S.
,
1994
, “
Interpolation Schemes for Intergrid Boundary Value Transfer Applied to Unsteady Transonic Flow Computations on Overlaid Embedded Grids
,”
Proceedings of the 2nd European Computational Fluid Dynamics Conference
, Stuttgart, Germany, Vol. 1, pp.
382
390
.
27.
Tanida
,
A.
,
Okajima
,
A.
, and
Watanabe
,
Y.
,
1973
, “
Stability of a Cylinder Oscillating in Uniform Flow or in a Wake
,”
J. Fluid Mech.
,
61
(
4
), pp.
769
784
.10.1017/S0022112073000935
28.
Williamson
,
C. H. K.
,
1989
, “
Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
206
, pp.
579
627
.10.1017/S0022112089002429
29.
Stansby
,
P. K.
, and
Slouti
,
A.
,
1993
, “
Simulation of Vortex Shedding Including Blockage by the Random-Vortex and Other Methods
,”
Int. J. Numer. Methods Fluids
,
17
, pp.
1003
1013
.10.1002/fld.1650171107
30.
Anagnostopoulos
,
P.
,
2000
, “
Numerical Study of the Flow Past a Cylinder Excited Transversely to the Incident Stream—Part 1: Lock-In Zone, Hydrodynamic Forces and Wake Geometry
,”
J. Fluids Struct.
,
14
, pp.
819
851
.10.1006/jfls.2000.0302
31.
Henderson
,
R. D.
,
1995
, “
Details of the Drag Curve Near the Onset of Vortex Shedding
,”
Phys. Fluids
,
7
, pp.
2102
2104
.10.1063/1.868459
32.
Skop
,
R. A.
, and
Griffin
,
O. M.
,
1975
, “
On a Theory for the Vortex-Excited Oscillations of Flexible Cylindrical Structures
,”
J. Sound Vib.
,
41
(
3
), pp.
263
274
.10.1016/S0022-460X(75)80173-8
33.
Newman
,
D. J.
, and
Karniadakis
,
G. E.
,
1997
, “
A Direct Numerical Simulation Study of Flow Past a Freely Vibrating Cable
,”
J. Fluid Mech.
,
344
, pp.
95
136
.10.1017/S002211209700582X
You do not currently have access to this content.