Via comparisons with rigid-rod and wormlike-chain Brownian dynamics (BD) simulations and the experimental results of Fu et al. (2006, “Molecular Sieving in Periodic Free-Energy Landscapes Created by Patterned Nanofilter Arrays,” Phys. Rev. Lett., 97(1), p. 018103), we demonstrate that, for the purposes of low-to-medium field electrophoretic separation, sufficiently short biomolecules can be modeled as point particles, with their orientational degrees of freedom accounted for using partition coefficients. This observation is used in the present work to build an efficient BD simulation method. Particular attention is paid to the model's ability to quantitatively capture experimental results using realistic values of all physical parameters.

References

References
1.
Grassia
,
P. S.
,
Hinch
,
E. J.
, and
Nitsche
,
L. C.
,
1995
, “
Computer Simulations of Brownian Motion of Complex Systems
,”
J. Fluid Mech.
,
282
, pp.
373
403
.10.1017/S0022112095000176
2.
Öttinger
,
H. C.
,
1996
,
Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms
,
Springer
,
New York
.
3.
Fu
,
J.
,
Yoo
,
J.
, and
Han
,
J.
,
2006
, “
Molecular Sieving in Periodic Free-Energy Landscapes Created by Patterned Nanofilter Arrays
,”
Phys. Rev. Lett.
,
97
(
1
), p.
018103
.10.1103/PhysRevLett.97.018103
4.
Fu
,
J.
,
Mao
,
P.
, and
Han
,
J.
,
2005
, “
Nanofilter Array Chip for Fast Gel-Free Biomolecule Separation
,”
Appl. Phys. Lett.
,
87
(
26
), p.
263902
.10.1063/1.2149979
5.
Pennathur
,
S.
,
Baldessari
,
F.
,
Santiago
,
J. G.
,
Kattah
,
M. G.
,
Steinman
,
J. B.
, and
Utz
,
P. J.
,
2007
, “
Free-Solution Oligonucleotide Separation in Nanoscale Channels
,”
Anal. Chem.
,
79
(
21
), pp.
8316
8322
.10.1021/ac0710580
6.
Viovy
,
J.
,
2000
, “
Electrophoresis of DNA and Other Polyelectrolytes: Physical Mechanisms
,”
Rev. Mod. Phys.
,
72
(
3
), pp.
813
872
.10.1103/RevModPhys.72.813
7.
Smejkal
,
G. B.
, and
Lazarev
,
A.
, eds.,
2006
,
Separation Methods in Proteomics
,
CRC Taylor & Francis
,
Boca Raton, FL
.
8.
Giddings
,
J. C.
, ,
1965
,
Dynamics of Chromatography. Part 1. Principles and Theory
,
Marcel Dekker
,
New York
.
9.
Scopes
,
R. K.
,
1994
,
Protein Purification: Principles and Practice
,
Springer-Verlag
,
New York
.
10.
Benoit
,
H.
, and
Doty
,
P.
,
1953
, “
Light Scattering From Non-Gaussian Chains
,”
J. Phys. Chem.
,
57
(
9
), pp.
958
963
.10.1021/j150510a025
11.
Streek
,
M.
,
Schmid
,
F.
,
Duong
,
T. T.
, and
Ros
,
A.
,
2004
, “
Mechanisms of DNA Separation in Entropic Trap Arrays: A Brownian Dynamics Simulation
,”
J. Biotechnology
,
112
(
1–2
), pp.
79
89
.10.1016/j.jbiotec.2004.04.021
12.
Panwar
,
A. S.
, and
Kumar
,
S.
,
2006
, “
Time Scales in Polymer Electrophoresis Through Narrow Constrictions: A Brownian Dynamics Study
,”
Macromolecules
,
39
(
3
), pp.
1279
1289
.10.1021/ma051041o
13.
Laachi
,
N.
,
Declet
,
C.
,
Matson
,
C.
, and
Dorfman
,
K. D.
,
2007
, “
Nonequilibrium Transport of Rigid Macromolecules in Periodically Constricted Geometries
,”
Phys. Rev. Lett.
,
98
(
9
), p.
098106
.10.1103/PhysRevLett.98.098106
14.
Fayad
,
G. N.
, and
Hadjiconstantinou
,
N. G.
,
2010
, “
Realistic Brownian Dynamics Simulations of Biological Molecule Separation in Nanofluidic Devices
,”
Microfluid. Nanofluid.
,
8
(
4
), pp.
521
529
.10.1007/s10404-009-0483-9
15.
Klenin
,
K.
,
Merlitz
,
H.
, and
Langowski
,
J.
,
1998
, “
A Brownian Dynamics Program for the Simulation of Linear and Circular DNA and Other Wormlike Chain Polyelectrolytes
,”
Biophys. J.
,
74
(
2
), pp.
780
788
.10.1016/S0006-3495(98)74003-2
16.
Li
,
Z. R.
,
Liu
,
G. R.
,
Han
,
J.
,
Cheng
,
Y.
,
Chen
,
Y. Z.
,
Wang
,
J.
, and
Hadjiconstantinou
,
N. G.
,
2009
, “
Analytical Description of Ogston-Regime Biomolecule Separation Using Nanofilters and Nanopores
,”
Phys. Rev. E
,
80
(
4
), p.
041911
.10.1103/PhysRevE.80.041911
17.
Li
,
Z. R.
,
Liu
,
G. R.
,
Hadjiconstantinou
,
N. G.
,
Han
,
J.
,
Wang
,
J.
, and
Chen
,
Y. Z.
,
2011
, “
Dispersive Transport of Biomolecules in Periodic Energy Landscapes With Application to Nanofilter Sieving Arrays
,”
Electrophoresis
,
32
, pp.
506
517
.10.1002/elps.201000259
18.
Fayad
,
G. N.
,
2010
, “
Computational Modeling of Biological Molecule Separation in Nanofluidic Devices
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
19.
Giddings
,
J. C.
,
Kucera
,
E.
,
Russell
,
C. P.
, and
Myers
,
M. N.
,
1968
, “
Statistical Theory for the Equilibrium Distribution of Rigid Molecules in Inert Porous Networks. Exclusion Chromatography
,”
J. Phys. Chem.
,
72
(
13
), pp.
4397
4408
.10.1021/j100859a008
20.
Lukacs
,
G. L.
,
Haggie
,
P.
,
Seksek
,
O.
,
Lechardeur
,
D.
,
Freedman
,
N.
, and
Verkman
,
A. S.
,
2000
, “
Size-Dependent DNA Mobility in Cytoplasm and Nucleus
,”
J. Biol. Chem.
,
275
(
3
), pp.
1625
1629
.10.1074/jbc.275.3.1625
21.
Cummings
,
E. B.
,
Griffiths
,
S. K.
,
Nilson
,
R. H.
, and
Paul
,
P. H.
,
2000
, “
Conditions for Similitude Between the Fluid Velocity and Electric Field in Electroosmotic Flow
,”
Anal. Chem.
,
72
(
11
), pp.
2526
2532
.10.1021/ac991165x
22.
Yariv
,
E.
, and
Dorfman
,
K. D.
,
2007
, “
Electrophoretic Transport Through Channels of Periodically Varying Cross Section
,”
Phys. Fluids
,
19
, p.
037101
.10.1063/1.2710894
23.
Wang
,
X.
, and
Drazer
,
G.
,
2009
, “
Transport Properties of Brownian Particles Confined to a Narrow Channel by a Periodic Potential
,”
Phys. Fluids
,
21
, p.
102002
.10.1063/1.3226100
You do not currently have access to this content.