The rapid electrokinetic patterning (REP) technique developed recently is a hybrid optoelectrokinetic one that manipulates micro- or nanocolloids in a microfluidic chip using the simultaneous application of a uniform ac electric field and laser illumination. Since its invention, the technique has been applied to many research fields with promising potential, but these applications are still in their early stages. In order to effectively complete and leverage the applications, this paper reviews the publications concerning the REP technique and discusses its underlying principles, applications, and future prospects.

References

References
1.
Franke
,
T. A.
, and
Wixforth
,
A.
,
2008
, “
Microfluidics for Miniaturized Laboratories on a Chip
,”
Chem. Phys. Chem.
,
9
(
15
), pp.
2140
2156
.10.1002/cphc.200800349
2.
Arai
,
F.
,
Ng
,
C.
,
Maruyama
,
H.
,
Ichikawa
,
A.
,
El-Shimy
,
H.
, and
Fukuda
,
T.
,
2005
, “
On Chip Single-Cell Separation and Immobilization Using Optical Tweezers and Thermosensitive Hydrogel
,”
Lab Chip
,
5
, pp.
1399
1403
.10.1039/b502546j
3.
Castillo
,
J.
,
Dimaki
,
M.
, and
Svendsen
,
W. E.
,
2009
, “
Manipulation of Biological Samples Using Micro and Nano Techniques
,”
Integrative Biol.
,
1
, pp.
30
42
.10.1039/b814549k
4.
Erickson
,
D.
,
Serey
,
X.
,
Chen
,
Y.-F.
, and
Mandal
,
S.
,
2011
, “
Nanomanipulation Using Near Field Photonics
,”
Lab Chip
,
11
, pp.
995
1009
.10.1039/c0lc00482k
5.
Gaîs
,
B.
,
2009
, “
Theory of Electrophoresis: Fate of One Equation
,”
Electrophoresis
,
30
(
S1
), pp.
S7
S15
.10.1002/elps.200900133
6.
Halas
,
N. J.
,
Lal
,
S.
,
Chang
,
W.-S.
,
Link
,
S.
, and
Nordlander
,
P.
,
2011
, “
Plasmons in Strongly Coupled Metallic Nanostructures
,”
Chem. Rev.
,
111
(
6
), pp.
3913
3961
.10.1021/cr200061k
7.
Jonáš
,
A.
, and
Zemánek
,
P.
,
2008
, “
Light at Work: The Use of Optical Forces for Particle Manipulation, Sorting, and Analysis
,”
Electrophoresis
,
29
(
24
), pp.
4813
4851
.10.1002/elps.200800484
8.
Jones
,
T. B.
,
1995
,
Electromechanics of Particles
,
Cambridge University Press
,
Cambridge, UK
.
9.
Kersaudy-Kerhoas
,
M.
,
Dhariwal
,
R.
, and
Desmulliez
,
M. P. Y.
,
2008
, “
Recent Advances in Microparticle Continuous Separation
,”
IET Nanobiotechnol.
,
2
(
1
), pp.
1
13
.10.1049/iet-nbt:20070025
10.
Khoshmanesh
,
K.
,
Nahavandi
,
S.
,
Baratchi
,
S.
,
Mitchell
,
A.
, and
Kalantar-zadeh
,
K.
,
2011
, “
Dielectrophoretic Platforms for Bio-Microfluidic Systems
,”
Biosensors Bioelectron.
,
26
(
5
), pp.
1800
1814
.10.1016/j.bios.2010.09.022
11.
Klepárník
,
K.
, and
Boîcek
,
P.
,
2010
, “
Electrophoresis Today and Tomorrow: Helping Biologists' Dreams Come True
,”
BioEssays
,
32
(
3
), pp.
218
226
.10.1002/bies.200900152
12.
Kuzyk
,
A.
,
2011
, “
Dielectrophoresis at the Nanoscale
,”
Electrophoresis
,
32
(
17
), pp.
2307
2313
.10.1002/elps.201100038
13.
Kwon
,
J.-S.
,
Maeng
,
J.-S.
,
Chun
,
M.-S.
, and
Song
,
S.
,
2008
, “
Improvement of Microchannel Geometry Subject to Electrokinesis and Dielectrophoresis Using Numerical Simulations
,”
Microfluidics Nanofluidics
,
5
, pp.
23
31
.10.1007/s10404-007-0210-3
14.
Melvin
,
M.
,
1987
,
Electrophoresis
,
John Wiley & Sons
,
Chichester, UK
.
15.
Minden
,
J.
,
2007
, “
Comparative Proteomics and Difference Gel Electrophoresis
,”
Biotechniques
,
43
(
6
), pp.
739
745
.10.2144/000112653
16.
Morgan
,
H.
,
Hughes
,
M. P.
, and
Green
,
N. G.
,
1999
, “
Separation of Submicron Bioparticles by Dielectrophoresis
,”
Biophys. J.
,
77
, pp.
516
525
.10.1016/S0006-3495(99)76908-0
17.
Nilsson
,
J.
,
Evander
,
M.
,
Hammarström
,
B.
, and
Laurell
,
T.
,
2009
, “
Review of Cell and Particle Trapping in Microfluidic Systems
,”
Anal. Chim. Acta
,
649
(
2
), pp.
141
157
.10.1016/j.aca.2009.07.017
18.
Pamme
,
N.
,
Eijkel
,
J. C. T.
, and
Manz
,
A.
,
2006
, “
On-Chip Free-Flow Magnetophoresis: Separation and Detection of Mixtures of Magnetic Particles in Continuous Flow
,”
J. Magn. Magn. Mater.
,
307
, pp.
237
244
.10.1016/j.jmmm.2006.04.008
19.
Pamme
,
N.
, and
Manz
,
A.
,
2004
, “
On-Chip Free-Flow Magnetophoresis: Continuous Flow Separation of Magnetic Particles and Agglomerates
,”
Anal. Chem.
,
76
, pp.
7250
7256
.10.1021/ac049183o
20.
Peyman
,
S. A.
,
Kwan
,
E. Y.
,
Margarson
,
O.
,
Iles
,
A.
, and
Pamme
,
N.
,
2009
, “
Diamagnetic Repulsion—A Versatile Tool for Label-Free Particle Handling in Microfluidic Devices
,”
J. Chromatogr. A
,
1216
(
52
), pp.
9055
9062
.10.1016/j.chroma.2009.06.039
21.
Rodríguez-Villarreal
,
A. I.
,
Tarn
,
M. D.
,
Madden
,
L. A.
,
Lutz
,
J. B.
,
Greenman
,
J.
,
Samitier
,
J.
, and
Pamme
,
N.
,
2011
, “
Flow Focussing of Particles and Cells Based on Their Intrinsic Properties Using a Simple Diamagnetic Repulsion Setup
,”
Lab Chip
,
11
, pp.
1240
1248
.10.1039/c0lc00464b
22.
Suwa
,
M.
, and
Watarai
,
H.
,
2011
, “
Magnetoanalysis of Micro/Nanoparticles: A Review
,”
Anal. Chim. Acta
,
690
(
2
), pp.
137
147
.10.1016/j.aca.2011.02.019
23.
Zhang
,
C.
,
Khoshmanesh
,
K.
,
Mitchell
,
A.
, and
Kalantar-zadeh
,
K.
,
2010
, “
Dielectrophoresis for Manipulation of Micro/Nano Particles in Microfluidic Systems
,”
Anal. Bioanal. Chem.
,
396
(
1
), pp.
401
420
.10.1007/s00216-009-2922-6
24.
Kumar
,
A.
,
Kwon
,
J.-S.
,
Williams
,
S. J.
,
Green
,
N. G.
,
Yip
,
N. K.
, and
Wereley
,
S. T.
,
2010
, “
Optically Modulated Electrokinetic Manipulation and Concentration of Colloidal Particles Near an Electrode Surface
,”
Langmuir
,
26
(
7
), pp.
5262
5272
.10.1021/la904661y
25.
Chiou
,
P.-Y.
,
Ohta
,
A. T.
,
Jamshidi
,
A.
,
Hsu
,
H.-Y.
, and
Wu
,
M. C.
,
2008
, “
Light-Actuated AC Electroosmosis for Nanoparticle Manipulation
,”
J. Microelectromech. Syst.
,
17
(
3
), pp.
525
531
.10.1109/JMEMS.2008.916342
26.
Jamshidi
,
A.
,
Neale
,
S. L.
,
Yu
,
K.
,
Pauzauskie
,
P. J.
,
Schuck
,
P. J.
,
Valley
,
J. K.
,
Hsu
,
H.-Y.
,
Ohta
,
A. T.
, and
Wu
,
M. C.
,
2009
, “
NanoPen: Dynamic, Low-Power, and Light-Actuated Patterning of Nanoparticles
,”
Nano Lett.
,
9
(
8
), pp.
2921
2925
.10.1021/nl901239a
27.
Kumar
,
A.
,
Kwon
,
J.-S.
,
Williams
,
S. J.
, and
Wereley
,
S. T.
,
2009
, “
A Novel Optically Driven Electrokinetic Technique for Manipulating Nanoparticles
,”
Proc
.
SPIE
7400.10.1117/12.826932
28.
Kumar
,
A.
,
Williams
,
S. J.
,
Chuang
,
H.-S.
,
Green
,
N. G.
, and
Wereley
,
S. T.
,
2011
, “
Hybrid Opto-Electric Manipulation in Microfluidics-Opportunities and Challenges
,”
Lab Chip
,
11
, pp.
2135
2148
.10.1039/c1lc20208a
29.
Seo
,
H.-K.
,
Kim
,
Y.-H.
,
Kim
,
H.-O.
, and
Kim
,
Y.-J.
,
2010
, “
Hybrid Cell Sorters for On-Chip Cell Separation by Hydrodynamics and Magnetophoresis
,”
J. Micromech. Microeng.
,
20
(
9
), p.
095019
.10.1088/0960-1317/20/9/095019
30.
Williams
,
S. J.
,
Kumar
,
A.
, and
Wereley
,
S. T.
,
2008
, “
Electrokinetic Patterning of Colloidal Particles With Optical Landscapes
,”
Lab Chip
,
8
, pp.
1879
1882
.10.1039/b810787d
31.
Williams
,
S. J.
,
2008
,
AC Dielectrophoresis Lab-On-Chip Devices
,
Springer
,
New York
.
32.
Williams
,
S. J.
,
Kumar
,
A.
,
Green
,
N. G.
, and
Wereley
,
S. T.
,
2010
, “
Optically Induced Electrokinetic Concentration and Sorting of Colloids
,”
J. Micromech. Microeng.
,
20
, p.
015022
.10.1088/0960-1317/20/1/015022
33.
Williams
,
S. J.
,
Kumar
,
A.
,
Green
,
N. G.
, and
Wereley
,
S. T.
,
2009
, “
A Simple, Optically Induced Electrokinetic Method to Concentrate and Pattern Nanoparticles
,”
Nanoscale
,
1
, pp.
133
137
.10.1039/b9nr00033j
34.
Kwon
,
J.-S.
,
Ravindranath
,
S. P.
,
Kumar
,
A.
,
Irudayaraj
,
J.
, and
Wereley
,
S. T.
,
2012
, “
Opto-Electrokinetic Manipulation for High-Performance On-Chip Bioassays
,”
Lab Chip
,
12
(
23
), pp.
4955
4959
.10.1039/c2lc40662d
35.
Kwon
,
J.-S.
,
Thakur
,
R.
, and
Wereley
,
S. T.
,
2012
, “
Rapid Electrokinetic Patterning
,”
Encyclopedia of Nanotechnology
,
B.
Bhushan
, ed.,
Springer
,
Dordrecht
, The Netherlands.
36.
Friend
,
J.
, and
Yeo
,
L. Y.
,
2011
, “
Microscale Acoustofluidics: Microfluidics Driven via Acoustics and Ultrasonics
,”
Rev. Mod. Phys.
,
83
(
2
), pp.
647
704
.10.1103/RevModPhys.83.647
37.
Petersson
,
F.
,
Åberg
,
L.
,
Swärd-Nilsson
,
A.-M.
, and
Laurell
,
T.
,
2007
, “
Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation
,”
Anal. Chem.
,
79
(
14
), pp.
5117
5123
.10.1021/ac070444e
38.
Shi
,
J.
,
Huang
,
H.
,
Stratton
,
Z.
,
Huang
,
Y.
, and
Huang
,
T. J.
,
2009
, “
Continuous Particle Separation in a Microfluidic Channel via Standing Surface Acoustic Waves (SSAW)
,”
Lab Chip
,
9
, pp.
3354
3359
.10.1039/b915113c
39.
Xuan
,
X.
,
Zhu
,
J.
, and
Church
,
C.
,
2010
, “
Particle Focusing in Microfluidic Devices
,”
Microfluidics Nanofluidics
,
9
(
1
), pp.
1
16
.10.1007/s10404-010-0602-7
40.
Squires
,
T. M.
, and
Quake
,
S. R.
,
2005
, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
,
77
(
3
), pp.
977
1026
.10.1103/RevModPhys.77.977
41.
Tanyeri
,
M.
,
Ranka
,
M.
,
Sittipolkul
,
N.
, and
Schroeder
,
C. M.
,
2011
, “
A Microfluidic-Based Hydrodynamic Trap: Design and Implementation
,”
Lab Chip
,
11
, pp.
1786
1794
.10.1039/c0lc00709a
42.
Mishra
,
A.
,
Thakur
,
R.
,
Williams
,
S.
,
Kumar
,
A.
, and
Wereley
,
S.
,
2012
, “
Optoelectrokinetic Trapping of Gold Nanoparticles for SERS Applications
,”
Proc. Annual Meeting of the APS Division of Fluid Dynamics
.
43.
Green
,
N. G.
,
Ramos
,
A.
,
Gonz
,
A.
,
Castellanos
,
A.
, and
Morgan
,
H.
,
2000
, “
Electric Field Induced Fluid Flow on Microelectrodes: The Effect of Illumination
,”
J. Phys. D
,
33
(
2
), pp.
L13
L17
.10.1088/0022-3727/33/2/102
44.
Green
,
N. G.
,
Ramos
,
A.
,
González
,
A.
,
Castellanos
,
A.
, and
Morgan
,
H.
,
2001
, “
Electrothermally Induced Fluid Flow on Microelectrodes
,”
J. Electrostat.
,
53
(
2
), pp.
71
81
.10.1016/S0304-3886(01)00132-2
45.
Kumar
,
A.
,
Cierpka
,
C.
,
Williams
,
S. J.
,
Kähler
,
C. J.
, and
Wereley
,
S. T.
,
2011
, “
3D3C Velocimetry Measurements of an Electrothermal Microvortex Using Wavefront Deformation PTV and a Single Camera
,”
Microfluidics Nanofluidics
,
10
(
2
), pp.
355
365
.10.1007/s10404-010-0674-4
46.
Kumar
,
A.
,
Williams
,
S. J.
, and
Wereley
,
S. T.
,
2009
, “
Experiments on Opto-Electrically Generated Microfluidic Vortices
,”
Microfluidics Nanofluidics
,
6
, pp.
637
646
.10.1007/s10404-008-0339-8
47.
Mizuno
,
A.
,
Nishioka
,
M.
,
Ohno
,
Y.
, and
Dascalescu
,
L.-D.
,
1995
, “
Liquid Microvortex Generated Around a Laser Focal Point in an Intense High-Frequency Electric Field
,”
IEEE Trans. Ind. Appl.
,
31
(
3
), pp.
464
468
.10.1109/28.382104
48.
Morgan
,
H.
, and
Green
,
N. G.
,
2002
,
AC Electrokinetics: Colloids and Nanoparticles
,
Research Studies Press
,
Baldock, Hertfordshire, England
.
49.
Ristenpart
,
W. D.
,
Aksay
,
I. A.
, and
Saville
,
D. A.
,
2004
, “
Assembly of Colloidal Aggregates by Electrohydrodynamic Flow: Kinetic Experiments and Scaling Analysis
,”
Phys. Rev. E
,
69
, p.
021405
.10.1103/PhysRevE.69.021405
50.
Fagan
,
J. A.
,
Sides
,
P. J.
, and
Prieve
,
D. C.
,
2002
, “
Vertical Oscillatory Motion of a Single Colloidal Particle Adjacent to an Electrode in an ac Electric Field
,”
Langmuir
,
18
(
21
), pp.
7810
7820
.10.1021/la025721l
51.
Fagan
,
J. A.
,
Sides
,
P. J.
, and
Prieve
,
D. C.
,
2004
, “
Vertical Motion of a Charged Colloidal Particle Near an AC Polarized Electrode With a Nonuniform Potential Distribution: Theory and Experimental Evidence
,”
Langmuir
,
20
(
12
), pp.
4823
4834
.10.1021/la036022r
52.
Fagan
,
J. A.
,
Sides
,
P. J.
, and
Prieve
,
D. C.
,
2005
, “
Evidence of Multiple Electrohydrodynamic Forces Acting on Colloical Particle Near an Electrode Due to an Alternating Current Electric Field
,”
Langmuir
,
21
, pp.
1784
1794
.10.1021/la048076m
53.
Fagan
,
J. A.
,
Sides
,
P. J.
, and
Prieve
,
D. C.
,
2006
, “
Mechanism of Rectified Lateral Motion of Particles Near Electrodes in Alternating Electric Fields Below 1 kHz
,”
Langmuir
,
22
(
24
), pp.
9846
9852
.10.1021/la060899j
54.
Ristenpart
,
W. D.
,
Aksay
,
I. A.
, and
Saville
,
D. A.
,
2007
, “
Electrohydrodynamic Flow Around a Colloidal Particle Near an Electrode With an Oscillating Potential
,”
J. Fluid Mech.
,
575
, pp.
83
109
.10.1017/S0022112006004368
55.
Ristenpart
,
W. D.
,
Jiang
,
P.
,
Slowik
,
M. A.
,
Punckt
,
C.
,
Saville
,
D. A.
, and
Aksay
,
I. A.
,
2008
, “
Electrohydrodynamic Flow and Colloidal Patterning Near Inhomogeneities on Electrodes
,”
Langmuir
,
24
(
21
), pp.
12172
12180
.10.1021/la801419k
56.
Cordero
,
M. L.
,
Verneuil
,
E.
,
Gallaire
,
F.
, and
Baroud
,
C. N.
,
2009
, “
Time-Resolved Temperature Rise in a Thin Liquid Film Due to Laser Absorption
,”
Phys. Rev. E
,
79
(
1
), p.
011201
.10.1103/PhysRevE.79.011201
57.
Green
,
N. G.
,
Ramos
,
A.
,
González
,
A.
,
Morgan
,
H.
, and
Castellanos
,
A.
,
2000
, “
Fluid Flow Induced by Nonuniform ac Electric Fields in Electrolytes on Microelectrodes. I. Experimental Measurements
,”
Phys. Rev. E
,
61
(
4
), p.
4011
4018
.10.1103/PhysRevE.61.4011
58.
Green
,
N. G.
,
Ramos
,
A.
,
González
,
A.
,
Morgan
,
H.
, and
Castellanos
,
A.
,
2002
, “
Fluid Flow Induced by Nonuniform ac Electric Fields in Electrolytes on Microelectrodes. III. Observation of Streamlines and Numerical Simulation
,”
Phys. Rev. E
,
66
(
2
), p.
026305
.10.1103/PhysRevE.66.026305
59.
Call
,
D.
, and
Logan
,
B. E.
,
2008
, “
Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane
,”
Environ. Sci. Technol.
,
42
(
9
), pp.
3401
3406
.10.1021/es8001822
60.
Justin
,
G.
,
Nasir
,
M.
, and
Ligler
,
F. S.
,
2011
, “
Hydrodynamic and Electrical Considerations in the Design of a Four-Electrode Impedance-Based Microfluidic Device
,”
Anal. Bioanal. Chem.
,
400
(
5
), pp.
1347
1358
.10.1007/s00216-011-4872-z
61.
Du
,
J.-R.
, and
Wei
,
H.-H.
,
2010
, “
Focusing and Trapping of DNA Molecules by Head-On ac Electrokinetic Streaming Through Join Asymmetric Polarization
,”
Biomicrofluidics
,
4
(
3
), p.
034108
.10.1063/1.3481468
62.
Thakur
,
R. V.
, and
Wereley
,
S. T.
,
2010
, “
Optically Induced Rapid Electrokinetic Patterning of Non-Spherical Particles: Study of Colloidal Phase Transition
,”
ASME International Mechanical Engineering Congress and Exposition
(
IMECE2010
),
Vancouver, British Columbia, Canada
.10.1115/IMECE2010-39665
63.
Poupon
,
A.
,
2004
, “
Voronoi and Voronoi-Related Tessellations in Studies of Protein Structure and Interaction
,”
Curr. Opinion Struct. Biol.
,
14
(
2
), pp.
233
241
.10.1016/j.sbi.2004.03.010
64.
Dukhin
,
S. S.
,
1993
, “
Non-Equilibrium Electric Surface Phenomena
,”
Adv. Colloid Interface Sci.
,
44
, pp.
1
134
.10.1016/0001-8686(93)80021-3
You do not currently have access to this content.