The rapid electrokinetic patterning (REP) technique developed recently is a hybrid optoelectrokinetic one that manipulates micro- or nanocolloids in a microfluidic chip using the simultaneous application of a uniform ac electric field and laser illumination. Since its invention, the technique has been applied to many research fields with promising potential, but these applications are still in their early stages. In order to effectively complete and leverage the applications, this paper reviews the publications concerning the REP technique and discusses its underlying principles, applications, and future prospects.
Issue Section:
Multiphase Flows
References
1.
Franke
, T. A.
, and Wixforth
, A.
, 2008
, “Microfluidics for Miniaturized Laboratories on a Chip
,” Chem. Phys. Chem.
, 9
(15
), pp. 2140
–2156
.10.1002/cphc.2008003492.
Arai
, F.
, Ng
, C.
, Maruyama
, H.
, Ichikawa
, A.
, El-Shimy
, H.
, and Fukuda
, T.
, 2005
, “On Chip Single-Cell Separation and Immobilization Using Optical Tweezers and Thermosensitive Hydrogel
,” Lab Chip
, 5
, pp. 1399
–1403
.10.1039/b502546j3.
Castillo
, J.
, Dimaki
, M.
, and Svendsen
, W. E.
, 2009
, “Manipulation of Biological Samples Using Micro and Nano Techniques
,” Integrative Biol.
, 1
, pp. 30
–42
.10.1039/b814549k4.
Erickson
, D.
, Serey
, X.
, Chen
, Y.-F.
, and Mandal
, S.
, 2011
, “Nanomanipulation Using Near Field Photonics
,” Lab Chip
, 11
, pp. 995
–1009
.10.1039/c0lc00482k5.
Gaîs
, B.
, 2009
, “Theory of Electrophoresis: Fate of One Equation
,” Electrophoresis
, 30
(S1
), pp. S7
–S15
.10.1002/elps.2009001336.
Halas
, N. J.
, Lal
, S.
, Chang
, W.-S.
, Link
, S.
, and Nordlander
, P.
, 2011
, “Plasmons in Strongly Coupled Metallic Nanostructures
,” Chem. Rev.
, 111
(6
), pp. 3913
–3961
.10.1021/cr200061k7.
Jonáš
, A.
, and Zemánek
, P.
, 2008
, “Light at Work: The Use of Optical Forces for Particle Manipulation, Sorting, and Analysis
,” Electrophoresis
, 29
(24
), pp. 4813
–4851
.10.1002/elps.2008004848.
Jones
, T. B.
, 1995
, Electromechanics of Particles
, Cambridge University Press
, Cambridge, UK
.9.
Kersaudy-Kerhoas
, M.
, Dhariwal
, R.
, and Desmulliez
, M. P. Y.
, 2008
, “Recent Advances in Microparticle Continuous Separation
,” IET Nanobiotechnol.
, 2
(1
), pp. 1
–13
.10.1049/iet-nbt:2007002510.
Khoshmanesh
, K.
, Nahavandi
, S.
, Baratchi
, S.
, Mitchell
, A.
, and Kalantar-zadeh
, K.
, 2011
, “Dielectrophoretic Platforms for Bio-Microfluidic Systems
,” Biosensors Bioelectron.
, 26
(5
), pp. 1800
–1814
.10.1016/j.bios.2010.09.02211.
Klepárník
, K.
, and Boîcek
, P.
, 2010
, “Electrophoresis Today and Tomorrow: Helping Biologists' Dreams Come True
,” BioEssays
, 32
(3
), pp. 218
–226
.10.1002/bies.20090015212.
Kuzyk
, A.
, 2011
, “Dielectrophoresis at the Nanoscale
,” Electrophoresis
, 32
(17
), pp. 2307
–2313
.10.1002/elps.20110003813.
Kwon
, J.-S.
, Maeng
, J.-S.
, Chun
, M.-S.
, and Song
, S.
, 2008
, “Improvement of Microchannel Geometry Subject to Electrokinesis and Dielectrophoresis Using Numerical Simulations
,” Microfluidics Nanofluidics
, 5
, pp. 23
–31
.10.1007/s10404-007-0210-314.
Melvin
, M.
, 1987
, Electrophoresis
, John Wiley & Sons
, Chichester, UK
.15.
Minden
, J.
, 2007
, “Comparative Proteomics and Difference Gel Electrophoresis
,” Biotechniques
, 43
(6
), pp. 739
–745
.10.2144/00011265316.
Morgan
, H.
, Hughes
, M. P.
, and Green
, N. G.
, 1999
, “Separation of Submicron Bioparticles by Dielectrophoresis
,” Biophys. J.
, 77
, pp. 516
–525
.10.1016/S0006-3495(99)76908-017.
Nilsson
, J.
, Evander
, M.
, Hammarström
, B.
, and Laurell
, T.
, 2009
, “Review of Cell and Particle Trapping in Microfluidic Systems
,” Anal. Chim. Acta
, 649
(2
), pp. 141
–157
.10.1016/j.aca.2009.07.01718.
Pamme
, N.
, Eijkel
, J. C. T.
, and Manz
, A.
, 2006
, “On-Chip Free-Flow Magnetophoresis: Separation and Detection of Mixtures of Magnetic Particles in Continuous Flow
,” J. Magn. Magn. Mater.
, 307
, pp. 237
–244
.10.1016/j.jmmm.2006.04.00819.
Pamme
, N.
, and Manz
, A.
, 2004
, “On-Chip Free-Flow Magnetophoresis: Continuous Flow Separation of Magnetic Particles and Agglomerates
,” Anal. Chem.
, 76
, pp. 7250
–7256
.10.1021/ac049183o20.
Peyman
, S. A.
, Kwan
, E. Y.
, Margarson
, O.
, Iles
, A.
, and Pamme
, N.
, 2009
, “Diamagnetic Repulsion—A Versatile Tool for Label-Free Particle Handling in Microfluidic Devices
,” J. Chromatogr. A
, 1216
(52
), pp. 9055
–9062
.10.1016/j.chroma.2009.06.03921.
Rodríguez-Villarreal
, A. I.
, Tarn
, M. D.
, Madden
, L. A.
, Lutz
, J. B.
, Greenman
, J.
, Samitier
, J.
, and Pamme
, N.
, 2011
, “Flow Focussing of Particles and Cells Based on Their Intrinsic Properties Using a Simple Diamagnetic Repulsion Setup
,” Lab Chip
, 11
, pp. 1240
–1248
.10.1039/c0lc00464b22.
Suwa
, M.
, and Watarai
, H.
, 2011
, “Magnetoanalysis of Micro/Nanoparticles: A Review
,” Anal. Chim. Acta
, 690
(2
), pp. 137
–147
.10.1016/j.aca.2011.02.01923.
Zhang
, C.
, Khoshmanesh
, K.
, Mitchell
, A.
, and Kalantar-zadeh
, K.
, 2010
, “Dielectrophoresis for Manipulation of Micro/Nano Particles in Microfluidic Systems
,” Anal. Bioanal. Chem.
, 396
(1
), pp. 401
–420
.10.1007/s00216-009-2922-624.
Kumar
, A.
, Kwon
, J.-S.
, Williams
, S. J.
, Green
, N. G.
, Yip
, N. K.
, and Wereley
, S. T.
, 2010
, “Optically Modulated Electrokinetic Manipulation and Concentration of Colloidal Particles Near an Electrode Surface
,” Langmuir
, 26
(7
), pp. 5262
–5272
.10.1021/la904661y25.
Chiou
, P.-Y.
, Ohta
, A. T.
, Jamshidi
, A.
, Hsu
, H.-Y.
, and Wu
, M. C.
, 2008
, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation
,” J. Microelectromech. Syst.
, 17
(3
), pp. 525
–531
.10.1109/JMEMS.2008.91634226.
Jamshidi
, A.
, Neale
, S. L.
,Yu
, K.
, Pauzauskie
, P. J.
, Schuck
, P. J.
, Valley
, J. K.
, Hsu
, H.-Y.
, Ohta
, A. T.
, and Wu
, M. C.
, 2009
, “NanoPen: Dynamic, Low-Power, and Light-Actuated Patterning of Nanoparticles
,” Nano Lett.
, 9
(8
), pp. 2921
–2925
.10.1021/nl901239a27.
Kumar
, A.
, Kwon
, J.-S.
, Williams
, S. J.
, and Wereley
, S. T.
, 2009
, “A Novel Optically Driven Electrokinetic Technique for Manipulating Nanoparticles
,” Proc
. SPIE
7400.10.1117/12.82693228.
Kumar
, A.
, Williams
, S. J.
, Chuang
, H.-S.
, Green
, N. G.
, and Wereley
, S. T.
, 2011
, “Hybrid Opto-Electric Manipulation in Microfluidics-Opportunities and Challenges
,” Lab Chip
, 11
, pp. 2135
–2148
.10.1039/c1lc20208a29.
Seo
, H.-K.
, Kim
, Y.-H.
, Kim
, H.-O.
, and Kim
, Y.-J.
, 2010
, “Hybrid Cell Sorters for On-Chip Cell Separation by Hydrodynamics and Magnetophoresis
,” J. Micromech. Microeng.
, 20
(9
), p. 095019
.10.1088/0960-1317/20/9/09501930.
Williams
, S. J.
, Kumar
, A.
, and Wereley
, S. T.
, 2008
, “Electrokinetic Patterning of Colloidal Particles With Optical Landscapes
,” Lab Chip
, 8
, pp. 1879
–1882
.10.1039/b810787d31.
Williams
, S. J.
, 2008
, AC Dielectrophoresis Lab-On-Chip Devices
, Springer
, New York
.32.
Williams
, S. J.
, Kumar
, A.
, Green
, N. G.
, and Wereley
, S. T.
, 2010
, “Optically Induced Electrokinetic Concentration and Sorting of Colloids
,” J. Micromech. Microeng.
, 20
, p. 015022
.10.1088/0960-1317/20/1/01502233.
Williams
, S. J.
, Kumar
, A.
, Green
, N. G.
, and Wereley
, S. T.
, 2009
, “A Simple, Optically Induced Electrokinetic Method to Concentrate and Pattern Nanoparticles
,” Nanoscale
, 1
, pp. 133
–137
.10.1039/b9nr00033j34.
Kwon
, J.-S.
, Ravindranath
, S. P.
, Kumar
, A.
, Irudayaraj
, J.
, and Wereley
, S. T.
, 2012
, “Opto-Electrokinetic Manipulation for High-Performance On-Chip Bioassays
,” Lab Chip
, 12
(23
), pp. 4955
–4959
.10.1039/c2lc40662d35.
Kwon
, J.-S.
, Thakur
, R.
, and Wereley
, S. T.
, 2012
, “Rapid Electrokinetic Patterning
,” Encyclopedia of Nanotechnology
, B.
Bhushan
, ed., Springer
, Dordrecht
, The Netherlands.36.
Friend
, J.
, and Yeo
, L. Y.
, 2011
, “Microscale Acoustofluidics: Microfluidics Driven via Acoustics and Ultrasonics
,” Rev. Mod. Phys.
, 83
(2
), pp. 647
–704
.10.1103/RevModPhys.83.64737.
Petersson
, F.
, Åberg
, L.
, Swärd-Nilsson
, A.-M.
, and Laurell
, T.
, 2007
, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation
,” Anal. Chem.
, 79
(14
), pp. 5117
–5123
.10.1021/ac070444e38.
Shi
, J.
, Huang
, H.
, Stratton
, Z.
, Huang
, Y.
, and Huang
, T. J.
, 2009
, “Continuous Particle Separation in a Microfluidic Channel via Standing Surface Acoustic Waves (SSAW)
,” Lab Chip
, 9
, pp. 3354
–3359
.10.1039/b915113c39.
Xuan
, X.
, Zhu
, J.
, and Church
, C.
, 2010
, “Particle Focusing in Microfluidic Devices
,” Microfluidics Nanofluidics
, 9
(1
), pp. 1
–16
.10.1007/s10404-010-0602-740.
Squires
, T. M.
, and Quake
, S. R.
, 2005
, “Microfluidics: Fluid Physics at the Nanoliter Scale
,” Rev. Mod. Phys.
, 77
(3
), pp. 977
–1026
.10.1103/RevModPhys.77.97741.
Tanyeri
, M.
, Ranka
, M.
, Sittipolkul
, N.
, and Schroeder
, C. M.
, 2011
, “A Microfluidic-Based Hydrodynamic Trap: Design and Implementation
,” Lab Chip
, 11
, pp. 1786
–1794
.10.1039/c0lc00709a42.
Mishra
, A.
, Thakur
, R.
, Williams
, S.
, Kumar
, A.
, and Wereley
, S.
, 2012
, “Optoelectrokinetic Trapping of Gold Nanoparticles for SERS Applications
,” Proc. Annual Meeting of the APS Division of Fluid Dynamics
.43.
Green
, N. G.
, Ramos
, A.
, Gonz
, A.
, Castellanos
, A.
, and Morgan
, H.
, 2000
, “Electric Field Induced Fluid Flow on Microelectrodes: The Effect of Illumination
,” J. Phys. D
, 33
(2
), pp. L13
–L17
.10.1088/0022-3727/33/2/10244.
Green
, N. G.
, Ramos
, A.
, González
, A.
, Castellanos
, A.
, and Morgan
, H.
, 2001
, “Electrothermally Induced Fluid Flow on Microelectrodes
,” J. Electrostat.
, 53
(2
), pp. 71
–81
.10.1016/S0304-3886(01)00132-245.
Kumar
, A.
, Cierpka
, C.
, Williams
, S. J.
, Kähler
, C. J.
, and Wereley
, S. T.
, 2011
, “3D3C Velocimetry Measurements of an Electrothermal Microvortex Using Wavefront Deformation PTV and a Single Camera
,” Microfluidics Nanofluidics
, 10
(2
), pp. 355
–365
.10.1007/s10404-010-0674-446.
Kumar
, A.
, Williams
, S. J.
, and Wereley
, S. T.
, 2009
, “Experiments on Opto-Electrically Generated Microfluidic Vortices
,” Microfluidics Nanofluidics
, 6
, pp. 637
–646
.10.1007/s10404-008-0339-847.
Mizuno
, A.
, Nishioka
, M.
, Ohno
, Y.
, and Dascalescu
, L.-D.
, 1995
, “Liquid Microvortex Generated Around a Laser Focal Point in an Intense High-Frequency Electric Field
,” IEEE Trans. Ind. Appl.
, 31
(3
), pp. 464
–468
.10.1109/28.38210448.
Morgan
, H.
, and Green
, N. G.
, 2002
, AC Electrokinetics: Colloids and Nanoparticles
, Research Studies Press
, Baldock, Hertfordshire, England
.49.
Ristenpart
, W. D.
, Aksay
, I. A.
, and Saville
, D. A.
, 2004
, “Assembly of Colloidal Aggregates by Electrohydrodynamic Flow: Kinetic Experiments and Scaling Analysis
,” Phys. Rev. E
, 69
, p. 021405
.10.1103/PhysRevE.69.02140550.
Fagan
, J. A.
, Sides
, P. J.
, and Prieve
, D. C.
, 2002
, “Vertical Oscillatory Motion of a Single Colloidal Particle Adjacent to an Electrode in an ac Electric Field
,” Langmuir
, 18
(21
), pp. 7810
–7820
.10.1021/la025721l51.
Fagan
, J. A.
, Sides
, P. J.
, and Prieve
, D. C.
, 2004
, “Vertical Motion of a Charged Colloidal Particle Near an AC Polarized Electrode With a Nonuniform Potential Distribution: Theory and Experimental Evidence
,” Langmuir
, 20
(12
), pp. 4823
–4834
.10.1021/la036022r52.
Fagan
, J. A.
, Sides
, P. J.
, and Prieve
, D. C.
, 2005
, “Evidence of Multiple Electrohydrodynamic Forces Acting on Colloical Particle Near an Electrode Due to an Alternating Current Electric Field
,” Langmuir
, 21
, pp. 1784
–1794
.10.1021/la048076m53.
Fagan
, J. A.
, Sides
, P. J.
, and Prieve
, D. C.
, 2006
, “Mechanism of Rectified Lateral Motion of Particles Near Electrodes in Alternating Electric Fields Below 1 kHz
,” Langmuir
, 22
(24
), pp. 9846
–9852
.10.1021/la060899j54.
Ristenpart
, W. D.
, Aksay
, I. A.
, and Saville
, D. A.
, 2007
, “Electrohydrodynamic Flow Around a Colloidal Particle Near an Electrode With an Oscillating Potential
,” J. Fluid Mech.
, 575
, pp. 83
–109
.10.1017/S002211200600436855.
Ristenpart
, W. D.
, Jiang
, P.
, Slowik
, M. A.
, Punckt
, C.
, Saville
, D. A.
, and Aksay
, I. A.
, 2008
, “Electrohydrodynamic Flow and Colloidal Patterning Near Inhomogeneities on Electrodes
,” Langmuir
, 24
(21
), pp. 12172
–12180
.10.1021/la801419k56.
Cordero
, M. L.
, Verneuil
, E.
, Gallaire
, F.
, and Baroud
, C. N.
, 2009
, “Time-Resolved Temperature Rise in a Thin Liquid Film Due to Laser Absorption
,” Phys. Rev. E
, 79
(1
), p. 011201
.10.1103/PhysRevE.79.01120157.
Green
, N. G.
, Ramos
, A.
, González
, A.
, Morgan
, H.
, and Castellanos
, A.
, 2000
, “Fluid Flow Induced by Nonuniform ac Electric Fields in Electrolytes on Microelectrodes. I. Experimental Measurements
,” Phys. Rev. E
, 61
(4
), p. 4011
–4018
.10.1103/PhysRevE.61.401158.
Green
, N. G.
, Ramos
, A.
, González
, A.
, Morgan
, H.
, and Castellanos
, A.
, 2002
, “Fluid Flow Induced by Nonuniform ac Electric Fields in Electrolytes on Microelectrodes. III. Observation of Streamlines and Numerical Simulation
,” Phys. Rev. E
, 66
(2
), p. 026305
.10.1103/PhysRevE.66.02630559.
Call
, D.
, and Logan
, B. E.
, 2008
, “Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane
,” Environ. Sci. Technol.
, 42
(9
), pp. 3401
–3406
.10.1021/es800182260.
Justin
, G.
, Nasir
, M.
, and Ligler
, F. S.
, 2011
, “Hydrodynamic and Electrical Considerations in the Design of a Four-Electrode Impedance-Based Microfluidic Device
,” Anal. Bioanal. Chem.
, 400
(5
), pp. 1347
–1358
.10.1007/s00216-011-4872-z61.
Du
, J.-R.
, and Wei
, H.-H.
, 2010
, “Focusing and Trapping of DNA Molecules by Head-On ac Electrokinetic Streaming Through Join Asymmetric Polarization
,” Biomicrofluidics
, 4
(3
), p. 034108
.10.1063/1.348146862.
Thakur
, R. V.
, and Wereley
, S. T.
, 2010
, “Optically Induced Rapid Electrokinetic Patterning of Non-Spherical Particles: Study of Colloidal Phase Transition
,” ASME International Mechanical Engineering Congress and Exposition
(IMECE2010
), Vancouver, British Columbia, Canada
.10.1115/IMECE2010-3966563.
Poupon
, A.
, 2004
, “Voronoi and Voronoi-Related Tessellations in Studies of Protein Structure and Interaction
,” Curr. Opinion Struct. Biol.
, 14
(2
), pp. 233
–241
.10.1016/j.sbi.2004.03.01064.
Dukhin
, S. S.
, 1993
, “Non-Equilibrium Electric Surface Phenomena
,” Adv. Colloid Interface Sci.
, 44
, pp. 1
–134
.10.1016/0001-8686(93)80021-3Copyright © 2013 by ASME
You do not currently have access to this content.