Microfluidic fuel cells eliminate the membrane by utilizing parallel colaminar flow of electrolyte between the anode and cathode electrodes. When operated on vanadium redox electrolyte, these cells also eliminate the need for catalyst. Hence, microfluidic fuel cells are promising contenders in terms of achieving useful performance levels for commercial applications while being cost-effective on a commercial scale. However, due to the inherent size of these devices the power output is relatively low and scale-up is a major challenge. In the present article, two planar cell multiplexing strategies are introduced, featuring a nonsymmetric unilateral design and a symmetric bilateral device architecture, both of which employ two cells with shared fluidic inlet ports. The fuel cell design is based on flow-through porous carbon electrodes using vanadium redox electrolytes as reactants. In both array architectures, the two cells are fluidically connected in parallel and electrically in series. The main challenge of achieving uniform flow distribution is assessed using laminar flow theory and computational fluid dynamics and validated experimentally. The normalized performance obtained with the two prototype array cells is found to be equivalent to previously reported data for single cells, in this case doubling the device level voltage and power output and reaching 820 and 1200 mW/cm2 peak power density for the nonsymmetric unilateral and symmetric bilateral array designs, respectively. It is, thus, demonstrated that both unilateral and bilateral planar multiplexing strategies are feasible for microfluidic fuel cell technologies and are shown to be particularly effective when the flow sharing between different cells is equal.

References

References
1.
Kjeang
,
E.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2009
, “
Microfluidic Fuel Cells: A Review
,”
J. Power Sources
,
186
, pp.
353
369
.10.1016/j.jpowsour.2008.10.011
2.
Ho
,
B.
, and
Kjeang
,
E.
,
2011
, “
Microfluidic Fuel Cell Systems
,”
Cent. Eur. J. Eng.
,
1
, pp.
123
131
.10.2478/s13531-011-0012-y
3.
Brushett
,
F.
,
Zhou
,
W.
,
Jayashree
,
R.
, and
Kenis
,
P.
,
2009
, “
Alkaline Microfluidic Hydrogen-Oxygen Fuel Cell as a Cathode Characterization Platform
,”
J. Electrochem. Soc.
,
156
(
5
), pp.
B565
B571
.10.1149/1.3083226
4.
Naughton
,
M.
,
Brushett
,
F.
, and
Kenis
,
P.
,
2011
, “
Carbonate Resilience of Flowing Electrolyte-Based Alkaline Fuel Cells
,”
J. Power Sources
,
196
, pp.
1762
1768
.10.1016/j.jpowsour.2010.09.114
5.
Kjeang
,
E.
,
Proctor
,
B. T.
,
Brolo
,
A. G.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2007
, “
High-Performance Microfluidic Vanadium Redox Fuel Cell
,”
Electrochim. Acta
,
52
, pp.
4942
4946
.10.1016/j.electacta.2007.01.062
6.
Ferrigno
,
R.
,
Stroock
,
A. D.
,
Clark
,
T. D.
,
Mayer
,
M.
, and
Whitesides
,
G. M.
,
2002
, “
Membraneless Vanadium Redox Fuel Cell Using Laminar Flow
,”
J. Am. Chem. Soc.
,
124
, pp.
12930
12931
.10.1021/ja020812q
7.
Salloum
,
K.
, and
Posner
,
J.
,
2010
, “
Counter Flow Membraneless Microfluidic Fuel Cell
,”
J. Power Sources
,
195
, pp.
6941
6944
.10.1016/j.jpowsour.2010.03.096
8.
Kjeang
,
E.
,
Brolo
,
A. G.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2007
, “
Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells
,”
J. Electrochem. Soc.
,
154
, pp.
B1220
B1226
.10.1149/1.2784185
9.
Kjeang
,
E.
,
Michel
,
R.
,
Harrington
,
D. A.
,
Sinton
,
D.
, and
Djilali
,
N.
,
2008
, “
An Alkaline Microfluidic Fuel Cell Based on Formate and Hypochlorite Bleach
,”
Electrochim. Acta
,
54
, pp.
698
705
.10.1016/j.electacta.2008.07.009
10.
Morales-Acosta
,
D.
,
Rodriguez
,
H.
,
Godinez
,
L.
, and
Arriaga
,
L. G.
,
2010
, “
Performance Increase of Microfluidic Formic Acid Fuel Cell Using Pd/MWCNTs as Catalyst
,”
J. Power Sources
,
195
, pp.
1862
1865
.10.1016/j.jpowsour.2009.10.007
11.
Gago
,
A.
,
Morales-Acosta
,
D.
,
Arriaga
,
L.
, and
Alonso-Vante
,
N.
,
2011
, “
Carbon Supported Ruthenium Chalcogenide as Cathode Catalyst in a Microfluidic Formic Acid Fuel Cell
,”
J. Power Sources
,
196
, pp.
1324
1328
.10.1016/j.jpowsour.2010.08.109
12.
Hollinger
,
A.
,
Maloney
,
R.
,
Jayashree
,
R.
,
Natarajan
,
D.
,
Markoski
,
L. J.
, and
Kenis
,
P. J. A.
,
2010
, “
Nanoporous Separator and Low Fuel Concentration to Minimize Crossover in Direct Methanol Laminar Flow Fuel Cells
,”
J. Power Sources
,
195
, pp.
3523
3528
.10.1016/j.jpowsour.2009.12.063
13.
Whipple
,
D.
,
Jayashree
,
R.
,
Egas
,
D.
,
Alonso-Vante
,
N.
, and
Kenis
,
P. J. A.
,
2009
, “
Ruthenium Cluster-Like Chalcogenide as a Methanol Tolerant Cathode Catalyst in Air-Breathing Laminar Flow Fuel Cells
,”
Electrochim. Acta
,
54
, pp.
4384
4388
.10.1016/j.electacta.2009.03.013
14.
Kjeang
,
E.
,
McKechnie
,
J.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2007
, “
Planar and Three-Dimensional Microfluidic Fuel Cell Architectures Based on Graphite Rod Electrodes
,”
J. Power Sources
,
168
, pp.
379
390
.10.1016/j.jpowsour.2007.02.087
15.
Kjeang
,
E.
,
Michel
,
R.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2008
, “
A Microfluidic Fuel Cell With Flow-Through Porous Electrodes
,”
J. Am. Chem. Soc.
,
130
, pp.
4000
4006
.10.1021/ja078248c
16.
Lee
,
J.
, and
Kjeang
,
E.
,
2012
, “
Chip-Embedded Thin Film Current Collector for Microfluidic Fuel Cells
,”
Int. J. Hydrogen Energ.
,
37
(
11
), pp.
9359
9367
.10.1016/j.ijhydene.2012.02.155
17.
Salloum
,
K.
, and
Posner
,
J.
,
2011
, “
A Membraneless Microfluidic Fuel Cell Stack
,”
J. Power Sources
,
196
, pp.
1229
1234
.10.1016/j.jpowsour.2010.08.069
18.
Moore
,
S.
,
Sinton
,
D.
, and
Erickson
,
D.
,
2011
, “
A Plate-Frame Flow-Through Microfluidic Fuel Cell Stack
,”
J. Power Sources
,
196
, pp.
9681
9487
.10.1016/j.jpowsour.2011.07.024
19.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
5th ed.
,
McGraw Hill
,
New York
.
20.
Blanc
,
C.
, and
Rufer
,
A.
,
2010
, “
Understanding the Vanadium Redox Flow Batteries
,”
Laboratoire d'Electronique Industrielle, Ecole Polytechnique Federale de Lausanne
,
Switzerland
.
21.
Hussaini
,
I. S.
, and
Wang
,
C. Y.
,
2010
, “
Measurement of Relative Permeability of Fuel Cell Diffusion Media
,”
J. Power Sources
,
195
, pp.
3830
3840
.10.1016/j.jpowsour.2009.12.105
22.
Hong
,
J.
,
2011
, “
Electrochemical Analysis of Vanadium Redox Reactions on Porous Carbon Electrodes
,”
B.A.Sc. thesis
,
Simon Fraser University
, Surrey, BC, Canada.
23.
Krishnamurthy
,
D.
,
Johansson
,
E. O.
,
Lee
,
J.
, and
Kjeang
,
E.
,
2011
, “
Computational Modeling of Microfluidic Fuel Cells With Flow-Through Porous Electrodes
,”
J. Power Sources
,
196
, pp.
10019
10031
.10.1016/j.jpowsour.2011.08.024
You do not currently have access to this content.