Carbon sequestration in microporous geological formations is an emerging strategy for mitigating CO2 emissions from fossil fuel consumption. Injection of CO2 in carbonate reservoirs can change the porosity and permeability of the reservoir regions, along the CO2 plume migration path, due to CO2-brine-rock interactions. Carbon sequestration is effectively a microfluidic process over large scales, and can readily benefit from microfluidic tools and analysis methods. In this study, a micro-core method was developed to investigate the effect of CO2 saturated brine and supercritical CO2 injection, under reservoir temperature and pressure conditions of 8.4 MPa and 40 °C, on the microstructure of limestone core samples. Specifically, carbonate dissolution results in pore structure, porosity, and permeability changes. These changes were measured by X-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium in the produced liquid. Chemical analysis results are consistent with the micro-CT imaging and permeability measurements which all show high dissolution for CO2 saturated brine injection and very minor dissolution under supercritical CO2 injection. This work leverages established advantages of microfluidics in the new context of core-sample analysis, providing a simple core sealing method, small sample size, small volumes of injection fluids, fast characterization times, and pore scale resolution.

References

References
1.
Weibel
,
D. B.
, and
Whitesides
,
G. M.
,
2006
, “
Applications of Microfluidics in Chemical Biology
,”
Current Opin. Chem. Biol.
,
10
, pp.
584
591
.10.1016/j.cbpa.2006.10.016
2.
Stone
,
H. A.
,
Strook
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
381
411
.10.1146/annurev.fluid.36.050802.122124
3.
Berejnov
,
V.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2008
, “
Lab-on-Chip Methodologies for the Study of Transport in Porous Media: Energy Applications
,”
Lab Chip
,
8
, pp.
689
693
.10.1039/b802373p
4.
Fadaei
,
H.
,
Scarff
,
B.
, and
Sinton
,
D.
,
2011
, “
Rapid Microfluidic-Based Measurement of CO2 Diffusivity in Bitumen
,”
Energy Fuels
,
25
, pp.
4829
4835
.10.1021/ef2009265
5.
Gunda
,
N. S. K.
,
Bera
,
B.
,
Karadimitriou
,
N. K.
,
Mitra
,
S. K.
, and
Hassanizadeh
,
S. M.
,
2011
, “
Reservoir-on-a-Chip (ROC): A New Paradigm in Reservoir Engineering
,”
Lab Chip
,
11
, pp.
3785
3792
.10.1039/c1lc20556k
6.
Riazi
,
M.
,
Sohrabi
,
M.
,
Bernstone
,
C.
,
Jamiolahmady
,
M.
, and
Ireland
,
S.
,
2011
, “
Visualization of Mechanisms Involved in CO2 Injection and Storage in Hydrocarbon Reservoir Water Bearing Aquifers
,”
Chem. Eng. Res. Design
,
89
, pp.
1827
1840
.10.1016/j.cherd.2011.03.009
7.
Sok
,
R. M.
,
Varslot
,
T.
,
Ghous
,
A.
,
Latham
,
S.
,
Sheppard
,
A. P.
, and
Knackstedt
,
M. A.
,
2009
, “
Pore Scale Characterization of Carbonates at Multiple Scales: Integration of Micro-CT, BSEM, and FIBSEM
,”
Petrophysics International Symposium of the Society-of-Core-Analysts
, Noordwijk, The Netherlands, Sept. 27–30.
8.
Dong
,
H.
, and
Blunt
,
M. J.
,
2009
, “
Pore-Network Extraction From Micro-Computerized-Tomography Images
,”
Phys. Rev. E
,
80
, p.
036307
.10.1103/PhysRevE.80.036307
9.
Bachu
,
S.
, and
Adams
,
J. J.
,
2003
, “
Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution
,”
Energy Conversion and Management
,
44
, pp.
3151
3175
.10.1016/S0196-8904(03)00101-8
10.
Bradshaw
,
J.
,
Bachu
,
S.
,
Bonijoly
,
D.
,
Burruss
,
R.
,
Holloway
,
S.
,
Christensen
,
N. P.
, and
Mathiassen
,
O. M.
,
2007
, “
CO2 Storage Capacity Estimation: Issues and Development Of Standards
,”
Int. J. Greenhouse Gas Control
,
1
, pp.
62
68
.10.1016/S1750-5836(07)00027-8
11.
Bachu
,
S.
,
2008
, “
CO2 Storage in Geological Media: Role, Means, Status, and Barriers to Deployment
,”
Prog. Energy Combust. Sci.
,
34
, pp.
254
273
.10.1016/j.pecs.2007.10.001
12.
Diamond
,
L. W.
, and
Akinfiev
,
N.
,
2003
, “
Solubility of CO2 in Water From −1.5 to 100 °C and From 0.1 to 100 MPa: Evaluation of Literature Data and Thermodynamic Modeling
,”
Fluid Phase Equilibria
,
208
, pp.
265
290
.10.1016/S0378-3812(03)00041-4
13.
Duan
,
Z.
, and
Sun
,
R.
,
2003
, “
An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions From 273 to 553K and From 0 to 2000 bar
,”
Chem. Geol.
,
193
, pp.
257
271
.10.1016/S0009-2541(02)00263-2
14.
Plummer
,
L. N.
,
Wigley
,
T. M. L.
, and
Parkhurst
,
D. L.
,
1978
, “
The Kinetics of Calcite Dissolution in CO2-Water Systems at 5 to 60 °C and 0.0 to 1.0 atm CO2
,”
Am. J. Sci.
,
278
, pp.
179
216
.10.2475/ajs.278.2.179
15.
Pokrovsky
,
O. S.
,
Golubev
,
S. V.
,
Schott
,
J.
, and
Castillo
,
A.
,
2009
, “
Calcite, Dolomite, and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: New Constraints on CO2 Sequestration in Sedimentary Basins
,”
Chem. Geol.
,
265
, pp.
20
32
.10.1016/j.chemgeo.2009.01.013
16.
Izgec
,
O.
,
Demiral
,
B.
,
Bertin
,
H.
, and
Akin
,
S.
,
2008
, “
CO2 Injection Into Saline Carbonate Aquifer Formations I: Laboratory Investigation
,”
Transport Porous Media
,
72
, pp.
1
24
.10.1007/s11242-007-9132-5
17.
Perrin
,
J. C.
,
Krause
,
M.
,
Kuo
,
C. W.
,
Miljkovic
,
L.
,
Charoba
,
E.
, and
Benson
,
S. M.
,
2009
, “
Core-Scale Experimental Study of Relative Permeability Properties of CO2 and Brine in Reservoir Rocks
,”
Energy Procedia
,
1
, pp.
3515
3522
.10.1016/j.egypro.2009.02.144
18.
Luquot
,
L.
, and
Gouze
,
P.
,
2009
, “
Experimental Determination of Porosity and Permeability Changes Induced by Injection of CO2 into Carbonate Rocks
,”
Chem. Geol.
,
265
, pp.
148
159
.10.1016/j.chemgeo.2009.03.028
19.
Gouze
,
P.
, and
Luquot
,
L.
,
2011
, “
X-Ray Microtomography Characterization of Porosity, Permeability and Reactive Surface Changes During Dissolution
,”
J. Contaminant Hydrology
,
120–121
, pp.
45
55
.10.1016/j.jconhyd.2010.07.004
20.
Iglauer
,
S.
,
Paluszny
,
A.
,
Pentland
,
C. H.
, and
Blunt
,
M.
,
2011
, “
Residual CO2 Imaged With X-Ray Micro-Tomography
,”
Geophys. Res. Lett.
,
38
, p.
L21403
.10.1029/2011GL049680
21.
Noiriel
,
C.
,
Gouze
,
P.
, and
Bernard
,
D.
,
2004
, “
Investigation of Porosity and Permeability Effects From Microstructure Changes During Limestone Dissolution
,”
Geophys. Res. Lett.
,
31
, p.
L24603
.10.1029/2004GL021572
22.
Bennion
,
D. B.
, and
Bachu
,
S.
,
2010
, “
Drainage and Imbibition CO2/Brine Relative Permeability Curves at Reservoir Conditions for High-Permeability Carbonate Rocks
,” Society of Petroleum Engineers (
SPE
), ID No. 134028.10.2118/134028-MS
23.
Pruess
,
K.
, and
Nordbotten
,
J.
,
2011
, “
Numerical Simulation Studies of the Long-Term Evolution of a CO2 Plume in a Saline Aquifer With a Sloping Caprock
,”
Transp. Porous Med.
,
90
, pp.
135
151
.10.1007/s11242-011-9729-6
24.
Sen
,
D.
,
Nobes
,
D. S.
, and
Mitra
,
S. K.
,
2012
, “
Optical Measurement of Pore Scale Velocity Field Inside Microporous Media
,”
Microfluid Nanofluid
,
12
, pp.
189
200
.10.1007/s10404-011-0862-x
25.
Grigg
,
R. B.
,
Svec
,
R. K.
,
Lichtner
,
P. C.
,
Carey
,
W.
, and
Lesher
,
C. E.
,
2005
, “
CO2/Brine/Carbonate Rock Interactions: Dissolution and Precipitation
,”
4th Annual Conference on Carbon Capture and Sequestration
,
Alexandria, VA
, pp.
1
14
.
You do not currently have access to this content.