Experimental studies employing advanced measurement techniques have played an important role in the advancement of two-phase microfluidic systems. In particular, flow visualization is very helpful in understanding the physics of two-phase phenomenon in microdevices. The objective of this article is to provide a brief but inclusive review of the available methods for studying bubble dynamics in microchannels and to introduce prior studies, which developed these techniques or utilized them for a particular microchannel application. The majority of experimental techniques used for characterizing two-phase flow in microchannels employs high-speed imaging and requires direct optical access to the flow. Such methods include conventional brightfield microscopy, fluorescent microscopy, confocal scanning laser microscopy, and micro particle image velocimetry (micro-PIV). The application of these methods, as well as magnetic resonance imaging (MRI) and some novel techniques employing nonintrusive sensors, to multiphase microfluidic systems is presented in this review.

References

References
1.
Lindken
,
R.
,
Rossi
,
M.
,
Große
,
S.
, and
Westerweel
,
J.
,
2009
, “
Micro-Particle Image Velocimetry (µPIV): Recent Developments, Applications, and Guidelines
,”
Lab Chip
,
9
(
17
), pp.
2551
2567
.10.1039/b906558j
2.
Fu
,
T.
,
Ma
,
Y.
,
Funfschilling
,
D.
, and
Li
,
H. Z.
,
2009
, “
Bubble Formation and Breakup Mechanism in a Microfluidic Flow-Focusing Device
,”
Chem. Eng. Sci.
,
64
(
10
), pp.
2392
2400
.10.1016/j.ces.2009.02.022
3.
Shui
,
L.
,
Eijkel
,
J.
, and
Vandenberg
,
A.
,
2007
, “
Multiphase Flow in Micro- and Nanochannels: A Review
,”
Sens. Actuators B
,
121
(
1
), pp.
263
276
.10.1016/j.snb.2006.09.040
4.
Gunther
,
A.
, and
Jensen
,
K. F.
,
2006
, “
Multiphase Microfluidics: From Flow Characteristics to Chemical and Materials Synthesis
,”
Lab Chip
,
6
(
12
), pp.
1487
1503
.10.1039/b609851g
5.
Yen
,
B. K. H.
,
Günther
,
A.
,
Schmidt
,
M. A.
,
Jensen
,
K. F.
, and
Bawendi
,
M. G.
,
2005
, “
A Microfabricated Gas–Liquid Segmented Flow Reactor for High-Temperature Synthesis: The Case of CdSe Quantum Dots
,”
Angew. Chem.
,
117
(
34
), pp.
5583
5587
.10.1002/ange.200500792
6.
Yu
,
Z.
,
Hemminger
,
O.
, and
Fan
,
L.
,
2007
, “
Experiment and Lattice Boltzmann Simulation of Two-Phase Gas–Liquid Flows in Microchannels
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7172
7183
.10.1016/j.ces.2007.08.075
7.
Dietrich
,
N.
,
Poncin
,
S.
,
Midoux
,
N.
, and
Li
,
H. Z.
,
2008
, “
Bubble Formation Dynamics in Various Flow-Focusing Microdevices
,”
Langmuir
,
24
(
24
), pp.
13904
13911
.10.1021/la802008k
8.
Hetsroni
,
G.
,
2003
, “
Two-Phase Flow Patterns in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
29
(
3
), pp.
341
360
.10.1016/S0301-9322(03)00002-8
9.
Wang
,
E.
,
Devasenathipathy
,
S.
,
Lin
,
H.
,
Hidrovo
,
C.
,
Santiago
,
J.
,
Goodson
,
K.
, and
Kenny
,
T.
,
2006
, “
A Hybrid Method for Bubble Geometry Reconstruction in Two-Phase Microchannels
,”
Exp. Fluids
,
40
(
6
), pp.
847
858
.10.1007/s00348-006-0123-z
10.
Cornwell
,
K.
, and
Kew
,
P. A.
,
1993
, “
Boiling in Small Parallel Channels
,”
Energy Efficiency in Process Technology
,
P. A.
Pilvachi
, ed.,
Elsevier
,
London
, pp.
624
638
.
11.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
12.
Born
,
M.
, and
Wolf
,
E.
,
1986
,
Principles of Optics
,
Pergamon Press
,
Oxford, UK
, p.
415
.
13.
Meinhart
,
C. D.
, and
Wereley
,
S. T.
,
2003
, “
The Theory of Diffraction-Limited Resolution in Microparticle Image Velocimetry
,”
Meas. Sci. Technol.
,
14
(
7
), pp.
1047
1053
.10.1088/0957-0233/14/7/320
14.
Piston
,
D. W.
,
1998
, “
Choosing Objective Lenses: The Importance of Numerical Aperture and Magnification in Digital Optical Microscopy
,”
Biol. Bull.
,
195
(
1
), pp.
1
4
.10.2307/1542768
15.
Thoroddsen
,
S. T.
,
Etoh
,
T. G.
, and
Takehara
,
K.
,
2008
, “
High-Speed Imaging of Drops and Bubbles
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
257
285
.10.1146/annurev.fluid.40.111406.102215
16.
Takeuchi
,
H.
,
Motosuke
,
M.
, and
Honami
,
S.
,
2012
, “
Noncontact Bubble Manipulation in Microchannel by Using Photothermal Marangoni Effect
,”
Heat Transfer Eng.
,
33
(
3
), pp.
234
244
.10.1080/01457632.2011.562753
17.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Experimental Fluid Mechanics)
,
R. J.
Adrian
,
M.
Gharib
,
W.
Merzkirch
,
D.
Rockwell
, and
J. H.
Whitelaw
, eds.,
Springer-Verlag
,
Berlin
, pp.
28
32
.
18.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2004
, “
Bubble Dynamics in Microchannels. Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5575
5589
.10.1016/j.ijheatmasstransfer.2004.02.031
19.
Li
,
H. Y.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2004
, “
Bubble Dynamics in Microchannels. Part II: Two Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5591
5601
.10.1016/j.ijheatmasstransfer.2004.02.032
20.
Feng
,
S. H.
, and
Pan
,
C.
,
2005
, “
Bubble Dynamics in Multiple Parallel Silicon-Based Microchannels
,”
Proceedings of the 16th International Symposium on Transport Phenomena
,
Prague, Czech Republic
.
21.
Barber
,
J.
,
Brutin
,
D.
,
Sefiane
,
K.
,
Gardarein
,
J. L.
, and
Tadrist
,
L.
,
2011
, “
Unsteady-State Fluctuations Analysis During Bubble Growth in a ‘Rectangular’ Microchannel
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4784
4795
.10.1016/j.ijheatmasstransfer.2011.06.026
22.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling on Micropin Fins Entrenched Inside a Microchannel—Flow Patterns and Bubble Departure Diameter and Bubble Frequency
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041002
.10.1115/1.2994718
23.
Coleman
,
J. W.
, and
Garimella
,
S.
,
1999
, “
Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes
,”
Int. J. Heat Mass Transfer
,
42
(
15
), pp.
2869
2881
.10.1016/S0017-9310(98)00362-7
24.
Xu
,
J.
,
Gan
,
Y.
,
Zhang
,
D.
, and
Li
,
X.
,
2005
, “
Microscale Boiling Heat Transfer in a Micro-Timescale at High Heat Fluxes
,”
J. Micromech. Microeng.
,
15
(
2
), pp.
362
376
.10.1088/0960-1317/15/2/017
25.
Fu
,
B. R.
,
Lin
,
P. H.
,
Tsou
,
M. S.
, and
Pan
,
C.
,
2012
, “
Flow Pattern Maps and Transition Criteria for Flow Boiling of Binary Mixtures in a Diverging Microchannel
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1754
1763
.10.1016/j.ijheatmasstransfer.2011.11.030
26.
Galvis
,
E.
, and
Culham
,
R.
,
2012
, “
Measurements and Flow Pattern Visualizations of Two-Phase Flow Boiling in Single Channel Microevaporators
,”
Int. J. Multiphase Flow
,
42
, pp.
52
61
.10.1016/j.ijmultiphaseflow.2012.01.009
27.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.10.1115/1.2165208
28.
Xu
,
J. H.
,
Li
,
S. W.
,
Wang
,
Y. J.
, and
Luo
,
G. S.
,
2006
, “
Controllable Gas-Liquid Phase Flow Patterns and Monodisperse Microbubbles in a Microfluidic T-Junction Device
,”
Appl. Phys. Lett.
,
88
(
13
), p.
133506
.10.1063/1.2189570
29.
Garstecki
,
P.
,
Fuerstman
,
M. J.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2006
, “
Formation of Droplets and Bubbles in a Microfluidic T-Junction—Scaling and Mechanism of Break-Up
,”
Lab Chip
,
6
(
3
), pp.
437
446
.10.1039/b510841a
30.
Pancholi
,
K. P.
,
Stride
,
E.
, and
Edirisinghe
,
M. J.
,
2008
, “
Dynamics of Bubble Formation in Highly Viscous Liquids
,”
Langmuir
,
24
(
8
), pp.
4388
4393
.10.1021/la703849x
31.
Chen
,
C.
,
Zhu
,
Y.
,
Leech
,
P. W.
, and
Manasseh
,
R.
,
2009
, “
Production of Monodispersed Micron-Sized Bubbles at High Rates in a Microfluidic Device
,”
Appl. Phys. Lett.
,
95
(
14
), p.
144101
.10.1063/1.3242019
32.
Wang
,
K.
,
Lu
,
Y. C.
,
Tan
,
J.
,
Yang
,
B. D.
, and
Luo
,
G. S.
,
2009
, “
Generating Gas/Liquid/Liquid Three-Phase Microdispersed Systems in Double T-Junctions Microfluidic Device
,”
Microfluid. Nanofluid.
,
8
(
6
), pp.
813
821
.10.1007/s10404-009-0514-6
33.
Wang
,
K.
,
Lu
,
Y. C.
,
Xu
,
J. H.
,
Tan
,
J.
, and
Luo
,
G. S.
,
2011
, “
Generation of Micromonodispersed Droplets and Bubbles in the Capillary Embedded T-Junction Microfluidic Devices
,”
AIChE J.
,
57
(
2
), pp.
299
306
.10.1002/aic.12263
34.
Yun
,
J.
,
Lei
,
Q.
,
Zhang
,
S.
,
Shen
,
S.
, and
Yao
,
K.
,
2010
, “
Slug Flow Characteristics of Gas–Miscible Liquids in a Rectangular Microchannel With Cross and t-Shaped Junctions
,”
Chem. Eng. Sci.
,
65
(
18
), pp.
5256
5263
.10.1016/j.ces.2010.06.031
35.
Fu
,
T.
,
Ma
,
Y.
,
Funfschilling
,
D.
,
Zhu
,
C.
, and
Li
,
H. Z.
,
2010
, “
Squeezing-to-Dripping Transition for Bubble Formation in a Microfluidic T-Junction
,”
Chem. Eng. Sci.
,
65
(
12
), pp.
3739
3748
.10.1016/j.ces.2010.03.012
36.
Santos
,
R. M.
, and
Kawaji
,
M.
,
2010
, “
Numerical Modeling and Experimental Investigation of Gas-Liquid Slug Formation in a Microchannel T-Junction
,”
Int. J. Multiphase Flow
,
36
(
4
), pp.
314
323
.10.1016/j.ijmultiphaseflow.2009.11.009
37.
Gañán-Calvo
,
A. M.
, and
Gordillo
,
J. M.
,
2001
, “
Perfectly Monodisperse Microbubbling by Capillary Flow Focusing
,”
Phys. Rev. Lett.
,
87
(
27
), p.
274501
.10.1103/PhysRevLett.87.274501
38.
Gordillo
,
J. M.
,
Cheng
,
Z.
,
Ganan-Calvo
,
A. M.
,
Márquez
,
M.
, and
Weitz
,
D. A.
,
2004
, “
A New Device for the Generation of Microbubbles
,”
Phys. Fluids
,
16
(
8
), pp.
2828
2834
.10.1063/1.1737739
39.
Garstecki
,
P.
,
Ganan-Calvo
,
A. M.
, and
Whitesides
,
G. M.
,
2005
, “
Formation of Bubbles and Droplets in Microfluidic Systems
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
53
(
4
), pp.
361
372
. Available at http://www.ippt.pan.pl/~bulletin/%2853-4%29361.pdf
40.
Garstecki
,
P.
,
Gitlin
,
I.
,
DiLuzio
,
W.
,
Whitesides
,
G. M.
,
Kumacheva
,
E.
, and
Stone
,
H. A.
,
2004
, “
Formation of Monodisperse Bubbles in a Microfluidic Flow-Focusing Device
,”
Appl. Phys. Lett.
,
85
(
13
), pp.
2649
2651
.10.1063/1.1796526
41.
Dollet
,
B.
,
van Hoeve
,
W.
,
Raven
,
J.-P.
,
Marmottant
,
P.
, and
Versluis
,
M.
,
2008
, “
Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices
,”
Phys. Rev. Lett.
,
100
(
3
), p.
034504
.10.1103/PhysRevLett.100.034504
42.
Fu
,
T.
,
Funfschilling
,
D.
,
Ma
,
Y.
, and
Li
,
H. Z.
,
2009
, “
Scaling the Formation of Slug Bubbles in Microfluidic Flow-Focusing Devices
,”
Microfluid. Nanofluid.
,
8
(
4
), pp.
467
475
.10.1007/s10404-009-0471-0
43.
Xiong
,
R.
,
Bai
,
M.
, and
Chung
,
J. N.
,
2007
, “
Formation of Bubbles in a Simple Co-Flowing Micro-Channel
,”
J. Micromech. Microeng.
,
17
(
5
), pp.
1002
1011
.10.1088/0960-1317/17/5/021
44.
Quan
,
X.
,
Chen
,
G.
, and
Cheng
,
P.
,
2010
, “
Periodic Generation and Transport of Micro Air Bubble in Co-Flowing of Water in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
992
997
.10.1016/j.icheatmasstransfer.2010.06.028
45.
Shintaku
,
H.
,
Imamura
,
S.
, and
Kawano
,
S.
,
2008
, “
Microbubble Formations in MEMS-Fabricated Rectangular Channels: A High-Speed Observation
,”
Exp. Therm. Fluid Sci.
,
32
(
5
), pp.
1132
1140
.10.1016/j.expthermflusci.2008.01.004
46.
Sevilla
,
A.
,
Gordillo
,
J. M.
, and
Martinez-Bazan
,
C.
,
2005
, “
Bubble Formation in a Coflowing Air-Water Stream
,”
J. Fluid Mech.
,
530
, pp.
181
195
.10.1017/S002211200500354X
47.
Yue
,
J.
,
Luo
,
L.
,
Gonthier
,
Y.
,
Chen
,
G.
, and
Yuan
,
Q.
,
2008
, “
An Experimental Investigation of Gas–Liquid Two-Phase Flow in Single Microchannel Contactors
,”
Chem. Eng. Sci.
,
63
(
16
), pp.
4189
4202
.10.1016/j.ces.2008.05.032
48.
Yasuno
,
M.
,
Sugiura
,
S.
,
Iwamoto
,
S.
,
Nakajima
,
M.
,
Shono
,
A.
, and
Satoh
,
K.
,
2004
, “
Monodispersed Microbubble Formation Using Microchannel Technique
,”
AIChE J.
,
50
(
12
), pp.
3227
3233
.10.1002/aic.10276
49.
Ichikawa
,
N.
,
Chung
,
P.
,
Matsumoto
,
S.
,
Matsumoto
,
J.-I.
, and
Takada
,
N.
,
2007
, “
Generation of Gas Bubbles in Microflow Using Micropipette With Ultrasound
,”
Microgravity Sci. Technol.
,
19
(
3
), pp.
35
37
.10.1007/BF02915744
50.
Barajas
,
A. B.
, and
Panton
,
R. L.
,
1993
, “
Effects of Contact Angle on Two-Phase Flow in Capillary Tubes
,”
Int. J. Multiphase Flow
,
19
(
2
), pp.
337
346
.10.1016/0301-9322(93)90007-H
51.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowski
,
D. L.
,
1999
, “
Gas-Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
377
394
.10.1016/S0301-9322(98)00054-8
52.
Yang
,
C. Y.
, and
Shieh
,
C. C.
,
2001
, “
Flow Pattern of Air-Water and Two-Phase R-134a in Small Circular Tubes
,”
Int. J. Multiphase Flow
,
27
(
7
), pp.
1163
1177
.10.1016/S0301-9322(00)00070-7
53.
Haverkamp
,
V.
,
Hessel
,
V.
,
Lowe
,
H.
,
Menges
,
G.
,
Warnier
,
M. J. F.
,
Rebrov
,
E. V.
,
de Croon
,
M. H. J. M.
,
Schouten
,
J. C.
, and
Liauw
,
M. A.
,
2006
, “
Hydrodynamics and Mixer-Induced Bubble Formation in Micro Bubble Columns With Single and Multiple-Channels
,”
Chem. Eng. Technol.
,
29
(
9
), pp.
1015
1026
.10.1002/ceat.200600180
54.
Serizawa
,
A.
,
Feng
,
Z.
, and
Kawara
,
Z.
,
2002
, “
Two-Phase Flow in Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
703
714
.10.1016/S0894-1777(02)00175-9
55.
Cubaud
,
T.
,
Ulmanella
,
U.
, and
Ho
,
C.-M.
,
2006
, “
Two-Phase Flow in Microchannels With Surface Modifications
,”
Fluid Dyn. Res.
,
38
(
11
), pp.
772
786
.10.1016/j.fluiddyn.2005.12.004
56.
Fu
,
B. R.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2007
, “
Two-Phase Flow in Converging and Diverging Microchannels With CO2 Bubbles Produced by Chemical Reactions
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
1
14
.10.1016/j.ijheatmasstransfer.2006.06.029
57.
Cubaud
,
T.
, and
Ho
,
C. M.
,
2004
, “
Transport of Bubbles in Square Microchannels
,”
Phys. Fluids
,
16
(
12
), pp.
4575
4585
.10.1063/1.1813871
58.
Sur
,
A.
, and
Liu
,
D.
,
2012
, “
Adiabatic Air-Water Two-Phase Flow in Circular Microchannels
,”
Int. J. Therm. Sci.
,
53
, pp.
18
34
.10.1016/j.ijthermalsci.2011.09.021
59.
Abadie
,
T.
,
Aubin
,
J.
,
Legendre
,
D.
, and
Xuereb
,
C.
,
2012
, “
Hydrodynamics of Gas-Liquid Taylor Flow in Rectangular Microchannels
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
355
369
.10.1007/s10404-011-0880-8
60.
Kawahara
,
A.
,
Sadatomi
,
M.
,
Nei
,
K.
, and
Matsuo
,
H.
,
2009
, “
Experimental Study on Bubble Velocity, Void Fraction and Pressure Drop for Gas–Liquid Two Phase Flow in a Circular Microchannel
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
831
841
.10.1016/j.ijheatfluidflow.2009.02.017
61.
Zhao
,
T. S.
, and
Bi
,
Q. C.
,
2001
, “
Co-Current Air–Water Two-Phase Flow Patterns in Vertical Triangular Microchannels
,”
Int. J. Multiphase Flow
,
27
(
5
), pp.
765
782
.10.1016/S0301-9322(00)00051-3
62.
Kwak
,
Y.
,
Pence
,
D.
,
Liburdy
,
J.
, and
Narayanan
,
V.
,
2009
, “
Gas–Liquid Flows in a Microscale Fractal-Like Branching Flow Network
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
868
876
.10.1016/j.ijheatfluidflow.2009.03.014
63.
Wang
,
Q.
, and
Zhang
,
Y.
,
2011
, “
High Speed Stereoscopic Shadowgraph Imaging and Its Digital 3D Reconstruction
,”
Meas. Sci. Technol.
,
22
(
6
), p.
065302
.10.1088/0957-0233/22/6/065302
64.
Voisin
,
C.
,
Jeandet
,
P.
, and
Liger-Belair
,
G.
,
2005
, “
On the 3D-Reconstruction of Taylor-Like Bubbles Trapped Inside Hollow Cellulose Fibers Acting as Bubble Nucleation Sites in Supersaturated Liquids
,”
Colloids Surf. A
,
263
, pp.
303
314
.10.1016/j.colsurfa.2004.12.052
65.
Blackmore
,
B.
,
2001
, “
Detachment of Bubbles in Slit Microchannels by Shearing Flow
,”
J. Colloid Interface Sci.
,
241
(
2
), pp.
514
520
.10.1006/jcis.2001.7755
66.
Chio
,
H.
,
Jensen
,
M. J.
,
Wang
,
X.
,
Bruus
,
H.
, and
Attinger
,
D.
,
2006
, “
Transient Pressure Drops of Gas Bubbles Passing Through Liquid-Filled Microchannel Contractions: An Experimental Study
,”
J. Micromech. Microeng.
,
16
(
1
), pp.
143
149
.10.1088/0960-1317/16/1/019
67.
Zhao
,
Y.
, and
Cho
,
S. K.
,
2007
, “
Micro Air Bubble Manipulation by Electrowetting on Dielectric (EWOD): Transporting, Splitting, Merging and Eliminating of Bubbles
,”
Lab Chip
,
7
(
2
), pp.
273
280
.10.1039/b616845k
68.
Xu
,
J.
,
Vaillant
,
R.
, and
Attinger
,
D.
,
2010
, “
Use of a Porous Membrane for Gas Bubble Removal in Microfluidic Channels: Physical Mechanisms and Design Criteria
,”
Microfluid. Nanofluid.
,
9
(
4
), pp.
765
772
.10.1007/s10404-010-0592-5
69.
Fu
,
B. R.
, and
Pan
,
C.
,
2009
, “
Bubble Growth With Chemical Reactions in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
767
776
.10.1016/j.ijheatmasstransfer.2008.07.018
70.
Borhani
,
N.
,
Agostini
,
B.
, and
Thome
,
J. R.
,
2010
, “
A Novel Time Strip Flow Visualisation Technique for Investigation of Intermittent Dewetting and Dryout in Elongated Bubble Flow in a Microchannel Evaporator
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4809
4818
.10.1016/j.ijheatmasstransfer.2010.06.011
71.
Ren
,
K. F.
,
Gouesbet
,
G.
,
Géhan
,
G.
,
Lebrun
,
D.
,
Özkul
,
C.
, and
Kleitz
,
A.
,
1996
, “
On the Measurements of Particles by Imaging Methods: Theoretical and Experimental Aspects
,”
Part. Part. Syst. Charact.
,
13
(
2
), pp.
156
164
.10.1002/ppsc.19960130215
72.
Niwa
,
Y.
,
Kamiya
,
Y.
,
Kawaguchi
,
T.
, and
Maeda
,
M.
,
2000
, “
Bubble Sizing by Interferometric Laser Imaging
,”
Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
.
73.
Maeda
,
M.
,
Kawaguchi
,
T.
, and
Hishida
,
K.
,
2000
, “
Novel Interferometric Measurement of Size and Velocity Distributions of Spherical Particles in Fluid Flows
,”
Meas. Sci. Technol.
,
11
(
12
), pp.
L13
L18
.10.1088/0957-0233/11/12/101
74.
Kawaguchi
,
T.
, and
Maeda
,
M.
,
2005
, “
Measurement Technique for Analysis in Two-Phase Flows Involving Distributed Size of Droplets and Bubbles Using Interferometric Method—Planar Simultaneous Measurement of Size and Velocity Vector Field
,”
Multiphase Sci. Technol.
,
17
(
1–2
), pp.
57
77
.10.1615/MultScienTechn.v17.i1-2.40
75.
Kawaguchi
,
T.
,
Akasaka
,
Y.
, and
Maeda
,
M.
,
2002
, “
Size Measurements of Droplets and Bubbles by Advanced Interferometric Laser Imaging Technique
,”
Meas. Sci. Technol.
,
13
(
3
), pp.
308
316
.10.1088/0957-0233/13/3/312
76.
Dehaeck
,
S.
, and
van Beeck
,
J. P. A. J.
,
2008
, “
Multifrequency Interferometric Particle Imaging for Gas Bubble Sizing
,”
Exp. Fluids
,
45
(
5
), pp.
823
831
.10.1007/s00348-008-0502-8
77.
Hess
,
C.
,
1998
, “
Planar Particle Image Analyzer
,”
Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
.
78.
Dehaeck
,
S.
,
van Beeck
,
J. P. A. J.
, and
Riethmuller
,
M. L.
,
2005
, “
Extended Glare Point Velocimetry and Sizing for Bubbly Flows
,”
Exp. Fluids
,
39
, pp.
407
419
.10.1007/s00348-005-1004-6
79.
Dehaeck
,
S.
,
Van Parys
,
H.
,
Hubin
,
A.
, and
van Beeck
,
J. P. A. J.
,
2009
, “
Laser Marked Shadowgraphy: A Novel Optical Planar Technique for the Study of Microbubbles and Droplets
,”
Exp. Fluids
,
47
(
2
), pp.
333
341
.10.1007/s00348-009-0668-8
80.
Sinton
,
D.
,
2004
, “
Microscale Flow Visualization
,”
Microfluid. Nanofluid.
,
1
(
1
), pp.
2
21
.10.1007/s10404-004-0009-4
81.
Aubin
,
J.
,
Ferrando
,
M.
, and
Jiricny
,
V.
,
2010
, “
Current Methods for Characterising Mixing and Flow in Microchannels
,”
Chem. Eng. Sci.
,
65
(
6
), pp.
2065
2093
.10.1016/j.ces.2009.12.001
82.
Brown
,
C.
,
2007
, “
Fluorescence Microscopy—Avoiding the Pitfalls
,”
J. Cell Sci.
,
120
(
10
), pp.
1703
1705
.10.1242/jcs.03433
83.
Gunther
,
A.
,
Khan
,
S. A.
,
Thalmann
,
M.
,
Trachsel
,
F.
, and
Jensen
,
K. F.
,
2004
, “
Transport and Reaction in Microscale Segmented Gas-Liquid Flow
,”
Lab Chip
,
4
(
4
), pp.
278
286
.10.1039/b403982c
84.
Waelchli
,
S.
, and
Rudolf von Rohr
,
P.
,
2006
, “
Two-Phase Flow Characteristics in Gas-Liquid Microreactors
,”
Int. J. Multiphase Flow
,
32
(
7
), pp.
791
806
.10.1016/j.ijmultiphaseflow.2006.02.014
85.
Fries
,
D. M.
,
Trachsel
,
F.
, and
von Rohr
,
P. R.
,
2008
, “
Segmented Gas-Liquid Flow Characterization in Rectangular Microchannels
,”
Int. J. Multiphase Flow
,
34
(
12
), pp.
1108
1118
.10.1016/j.ijmultiphaseflow.2008.07.002
86.
Weinmueller
,
C.
,
Hotz
,
N.
,
Mueller
,
A.
, and
Poulikakos
,
D.
,
2009
, “
On Two-Phase Flow Patterns and Transition Criteria in Aqueous Methanol and CO2 Mixtures in Adiabatic, Rectangular Microchannels
,”
Int. J. Multiphase Flow
,
35
(
8
), pp.
760
772
.10.1016/j.ijmultiphaseflow.2009.03.010
87.
Yamaguchi
,
E.
,
Smith
,
B. J.
, and
Gaver
,
D. P.
,
2009
, “
μ-PIV Measurements of the Ensemble Flow Fields Surrounding a Migrating Semi-Infinite Bubble
,”
Exp. Fluids
,
47
(
2
), pp.
309
320
.10.1007/s00348-009-0662-1
88.
Meng
,
L.
,
Cai
,
F.
,
Jin
,
Q.
,
Niu
,
L.
,
Jiang
,
C.
,
Wang
,
Z.
,
Wu
,
J.
, and
Zheng
,
H.
,
2011
, “
Acoustic Aligning and Trapping of Microbubbles in an Enclosed PDMS Microfluidic Device
,”
Sens. Actuators B
,
160
(
1
), pp.
1599
1605
.10.1016/j.snb.2011.10.015
89.
Hellman
,
A. N.
,
Rau
,
K. R.
,
Yoon
,
H. H.
,
Bae
,
S.
,
Palmer
,
J. F.
,
Phillips
,
K. S.
,
Allbritton
,
N. L.
, and
Venugopalan
,
V.
,
2007
, “
Laser-Induced Mixing in Microfluidic Channels
,”
Anal. Chem.
,
79
(
12
), pp.
4484
4492
.10.1021/ac070081i
90.
Claxton
,
N. S.
,
Fellers
,
T. J.
, and
Davidson
,
M. W.
,
2006
, “
Laser Scanning Confocal Microscopy
,”
Department of Optical Microscopy and Digital Imaging, Florida State University
,
Tallahassee
, http://www.olympusconfocal.com/theory/LSCMIntro.pdf
91.
Ferrando
,
M.
, and
Spiess
,
W. E. L.
,
2000
, “
Review: Confocal Scanning Laser Microscopy—A Powerful Tool in Food Science
,”
Food Sci. Technol. Int.
,
6
(
4
), pp.
267
284
.10.1177/108201320000600402
92.
Kihm
,
K. D.
,
Kim
,
H.-J.
,
Park
,
J.-S.
,
Banerjee
,
A.
,
Wee
,
S.-K.
,
Choi
,
C.-K.
,
Paik
,
S.-W.
,
Seo
,
C.-S.
, and
Lee
,
H.-J.
,
2004
, “
Development of Microscale Visualization Techniques
,”
J. Flow Visualization Image Process.
,
11
(
3
), pp.
153
176
.10.1615/JFlowVisImageProc.v11.i3.10
93.
Park
,
J. S.
,
Kihm
,
K. D.
, and
Allen
,
J. S.
,
2002
, “
Three-Dimensional Microfluidic Measurements Using Optical Sectioning by Confocal Microscopy: Flow Around a Moving Air Bubble in a Micro-Channel
,”
Proceedings of the 2002
ASME
International Mechanical Engineering Congress and Exposition, ASME,
New York
, pp.
217
222
.10.1115/IMECE2002-32790
94.
Park
,
J. S.
,
Choi
,
C. K.
, and
Kihm
,
K. D.
,
2004
, “
Optically Sliced Micro-PIV Using Confocal Laser Scanning Microscopy (CLSM)
,”
Exp. Fluids
,
37
(
1
), pp.
105
119
.10.1007/s00348-004-0790-6
95.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
,
1998
, “
Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
,
25
(
4
), pp.
316
319
.10.1007/s003480050235
96.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
,
1999
, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
,
27
(
5
), pp.
414
419
.10.1007/s003480050366
97.
Meinhart
,
C. D.
,
Wereley
,
S.
, and
Gray
,
M.
,
2000
, “
Volume Illumination for Two-Dimensional Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
11
(
6
), pp.
809
814
.10.1088/0957-0233/11/6/326
98.
Bayraktar
,
T.
, and
Pidugu
,
S. B.
,
2006
, “
Characterization of Liquid Flows in Microfluidic Systems
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
815
824
.10.1016/j.ijheatmasstransfer.2005.11.007
99.
Lindken
,
R.
, and
Merzkirch
,
W.
,
2002
, “
A Novel PIV Technique for Measurements in Multiphase Flows and Its Application to Two-Phase Bubbly Flows
,”
Exp. Fluids
,
33
(
6
), pp.
814
825
.10.1007/s00348-002-0500-1
100.
Yoon
,
S. Y.
,
Kim
,
J. M.
,
Kim
,
S. H.
, and
Kim
,
K. C.
,
2004
, “
Micro-LIF Measurement in a Micro-Channel Using an Ultra-Thin Laser Light Sheet
,” Proceedings of the 2004
ASME
International Mechanical Engineering Congress and Exposition (IMECE 2004), ASME
,
New York
, pp.
349
355
.10.1115/IMECE2004-61020
101.
Yoon
,
S. Y.
,
Ross
,
J. W.
,
Mench
,
M. M.
, and
Sharp
,
K. V.
,
2006
, “
Gas-Phase Particle Image Velocimetry (PIV) for Application to the Design of Fuel Cell Reactant Flow Channels
,”
J. Power Sources
,
160
(
2
), pp.
1017
1025
.10.1016/j.jpowsour.2006.02.043
102.
Fu
,
T.
,
Ma
,
Y.
,
Funfschilling
,
D.
, and
Li
,
H. Z.
,
2011
, “
Dynamics of Bubble Breakup in a Microfluidic T-Junction Divergence
,”
Chem. Eng. Sci.
,
66
(
18
), pp.
4184
4195
.10.1016/j.ces.2011.06.003
103.
Kwak
,
Y.
,
Liburdy
,
J.
,
Pence
,
D.
, and
Narayanan
,
V.
,
2007
, “
Liquid and Gas Phase Velocity Measurements for Two Phase Flow in a Branching Microchannel Network
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
(
IMECE
2007), ASME,
New York
, pp.
791
800
.10.1115/IMECE2007-41621
104.
Vansteijn
,
V.
,
Kreutzer
,
M.
, and
Kleijn
,
C.
,
2007
, “
μ-PIV Study of the Formation of Segmented Flow in Microfluidic T-Junctions
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7505
7514
.10.1016/j.ces.2007.08.068
105.
Tseng
,
F. G.
,
Yang
,
I. D.
,
Lin
,
K. H.
,
Ma
,
K. T.
,
Lu
,
M. C.
,
Tseng
,
Y. T.
, and
Chieng
,
C. C.
,
2002
, “
Fluid Filling Into Micro-Fabricated Reservoirs
,”
Sens. Actuators
,
97–98
, pp.
131
138
.10.1016/S0924-4247(01)00826-3
106.
Elcock
,
D.
,
Jung
,
J.
,
Kuo
,
C. J.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Interaction of a Liquid Flow Around a Micropillar With a Gas Jet
,”
Phys. Fluids
,
23
(
12
), p.
122001
.10.1063/1.3662436
107.
Fries
,
D. M.
, and
von Rohr
,
P. R.
,
2009
, “
Liquid Mixing in Gas-Liquid Two-Phase Flow by Meandering Microchannels
,”
Chem. Eng. Sci.
,
64
(
6
), pp.
1326
1335
.10.1016/j.ces.2008.11.019
108.
Fries
,
D. M.
,
Waelchli
,
S.
, and
Rudolf von Rohr
,
P.
,
2007
, “
Gas-Liquid Two-Phase Flow in Meandering Microchannels
,”
Chem. Eng. J.
,
135
(
Suppl. 1
), pp.
S37
S45
.10.1016/j.cej.2007.07.052
109.
Devasenathipathy
,
S.
,
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
, and
Takehara
,
K.
,
2003
, “
Particle Imaging Techniques for Microfabricated Fluidic Systems
,”
Exp. Fluids
,
34
(
4
), pp.
504
514
.10.1007/s00348-003-0588-y
110.
Park
,
J. S.
, and
Kihm
,
K. D.
,
2006
, “
Three-Dimensional Micro-PTV Using Deconvolution Microscopy
,”
Exp. Fluids
,
40
(
3
), pp.
491
499
.10.1007/s00348-005-0090-9
111.
Mantle
,
M. D.
,
Sederman
,
A. J.
,
Gladden
,
L. F.
,
Raymahasay
,
S.
,
Winterbottom
,
J. M.
, and
Stitt
,
E. H.
,
2002
, “
Dynamic MRI Visualization of Two-Phase Flow in a Ceramic Monolith
,”
AIChE J.
,
48
(
4
), pp.
909
912
.10.1002/aic.690480425
112.
Gladden
,
L. F.
,
Lim
,
M. H. M.
,
Mantle
,
M. D.
,
Sederman
,
A. J.
, and
Stitt
,
E. H.
,
2003
, “
MRI Visualisation of Two-Phase Flow in Structured Supports and Trickle-Bed Reactors
,”
Catal. Today
,
79–80
, pp.
203
210
.10.1016/S0920-5861(03)00006-3
113.
Sederman
,
A. J.
,
Mantle
,
M. D.
, and
Gladden
,
L. F.
,
2003
, “
Single Excitation Multiple Image RARE (SEMI-RARE): Ultra-Fast Imaging of Static and Flowing Systems
,”
J. Magn. Res.
,
161
(
1
), pp.
15
24
.10.1016/S1090-7807(02)00141-6
114.
Sederman
,
A. J.
,
Heras
,
J. J.
,
Mantle
,
M. D.
, and
Gladden
,
L. F.
,
2007
, “
MRI Strategies for Characterising Two-Phase Flow in Parallel Channel Ceramic Monoliths
,”
Catal. Today
,
128
(
1–2
), pp.
3
12
.10.1016/j.cattod.2007.04.012
115.
Heras
,
J. J.
,
Sederman
,
A. J.
, and
Gladden
,
L. F.
,
2005
, “
Ultrafast Velocity Imaging of Single- and Two-Phase Flows in a Ceramic Monolith
,”
Magn. Reson. Imaging
,
23
(
2
), pp.
387
389
.10.1016/j.mri.2004.11.037
116.
Kraus
,
T.
,
Gunther
,
A.
,
Mas
,
N.
,
Schmidt
,
M. A.
, and
Jensen
,
K. F.
,
2004
, “
An Integrated Multiphase Flow Sensor for Microchannels
,”
Exp. Fluids
,
36
(
6
), pp.
819
832
.10.1007/s00348-003-0764-0
117.
De Mas
,
N.
,
Gunther
,
A.
,
Kraus
,
T.
,
Schmidt
,
M. A.
, and
Jensen
,
K. F.
,
2005
, “
Scaled-Out Multilayer Gas-Liquid Microreactor With Integrated Velocimetry Sensors
,”
Ind. Eng. Chem. Res.
,
44
(
24
), pp.
8997
9013
.10.1021/ie050472s
118.
Leung
,
S.-A.
,
Edel
,
J. B.
,
Wootton
,
R. C. R.
, and
deMello
,
A. J.
,
2004
, “
Continuous Real-Time Bubble Monitoring in Microchannels Using Refractive Index Detection
,”
Meas. Sci. Technol.
,
15
(
1
), pp.
290
296
.10.1088/0957-0233/15/1/042
119.
Wolffenbuttel
,
B. M. A.
,
Nijhuis
,
T. A.
,
Stankiewicz
,
A.
, and
Moulijn
,
J. A.
,
2002
, “
Novel Method for Non-Intrusive Measurement of Velocity and Slug Length in Two- and Three-Phase Slug Flow in Capillaries
,”
Meas. Sci. Technol.
,
13
(
10
), pp.
1540
1544
.10.1088/0957-0233/13/10/305
120.
Revellin
,
R.
,
Agostini
,
B.
, and
Thome
,
J. R.
,
2008
, “
Elongated Bubbles in Microchannels. Part II: Experimental Study and Modeling of Bubble Collisions
,”
Int. J. Multiphase Flow
,
34
(
6
), pp.
602
613
.10.1016/j.ijmultiphaseflow.2007.07.006
121.
Revellin
,
R.
,
Agostini
,
B.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2008
, “
Experimental Investigation of Velocity and Length of Elongated Bubbles for Flow of R-134a in a 0.5 mm Microchannel
,”
Exp. Therm. Fluid Sci.
,
32
(
3
), pp.
870
881
.10.1016/j.expthermflusci.2007.10.006
122.
Revellin
,
R.
,
Dupont
,
V.
,
Ursenbacher
,
T.
,
Thome
,
J. R.
, and
Zun
,
I.
,
2006
, “
Characterization of Diabatic Two-Phase Flows in Microchannels: Flow Parameter Results for R-134a in a 0.5 mm Channel
,”
Int. J. Multiphase Flow
,
32
(
7
), pp.
755
774
.10.1016/j.ijmultiphaseflow.2006.02.016
123.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
Optical Measurements to Characterize Two-Phase Fluid Flow in Microchannels
,”
Multiphase Sci. Technol.
,
19
(
1
), pp.
75
97
.10.1615/MultScienTechn.v19.i1.30
You do not currently have access to this content.