The integration of micro/nanofluidic devices led to many interesting phenomena and one of the most important and complex phenomenon among them is concentration polarization. In this paper, we report new physical insights in micro/nanofluidic interface devices on the application of ac and dc electric fields. By performing detailed numerical simulations based on the coupled Poisson, Nernst–Planck, and incompressible Navier–Stokes equations, we discuss electrokinetic transport and other hydrodynamic effects under the application of combined ac and dc electric fields for different nondimensional electrical double layer (EDL) thicknesses and nanochannel wall surface charge densities. We show that for a highly ion-selective nanochannel, the application of the combined ac/dc electric field, at amplitudes greater than the dc voltage and at a low Strouhal number, results in large dual concentration polarization regions (with unequal lengths) at both the micro/nanofluidic interfaces due to large and unequal voltage drops at these junctions. The highly nonlinear potential distribution gives rise to an electric field and body force that changes the electrokinetic fluid velocity from that obtained on the application of only a dc source.

References

References
1.
Hong
,
J. W.
, and
Quake
,
S. R.
,
2003
, “
Integrated Nanoliter Systems
,”
Nat. Biotechnol.
,
21
, pp.
1179
1183
.10.1038/nbt871
2.
Prakash
,
S.
,
Piruska
,
A.
,
Gatimu
,
E. N.
,
Bohn
,
P. W.
,
Sweedler
,
J. V.
, and
Shannon
,
M. A.
,
2008
, “
Nanofluidics: Systems and Applications
,”
IEEE Sens. J.
,
8
(
5
), pp.
441
450
.10.1109/JSEN.2008.918758
3.
Schoch
,
R. B.
,
Han
,
J.
, and
Renaud
,
P.
,
2008
, “
Transport Phenomena in Nanofluidics
,”
Rev. Mod. Phys.
,
80
, pp.
839
883
.10.1103/RevModPhys.80.839
4.
Chang
,
H.-C.
, and
Yossifon
,
G.
,
2009
, “
Understanding Electrokinetics at the Nanoscale: A Perspective
,”
Biomicrofluidics
,
3
, p.
012001
.10.1063/1.3056045
5.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N. R.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer
,
New York
.
6.
Bayraktar
,
T.
, and
Pidugu
,
S. B.
,
2006
, “
Characterization of Liquid Flows in Microfluidic System
,”
Int. J. Heat Mass Transfer
,
49
, pp.
815
824
.10.1016/j.ijheatmasstransfer.2005.11.007
7.
Wong
,
P. K.
,
Chen
,
C.-Y.
,
Wang
,
T.-H.
, and
Ho
,
C.-M.
,
2004
, “
Electrokinetic Bioprocessor for Concentrating Cells and Molecules
,”
Anal. Chem.
,
76
, pp.
6908
6914
.10.1021/ac049479u
8.
Qiao
,
R.
, and
Aluru
,
N. R.
,
2003
, “
Ion Concentrations and Velocity Profiles in Nanochannel Electroosmotic Flows
,”
J. Chem. Phys.
,
118
, pp.
4692
4701
.10.1063/1.1543140
9.
Kuo
,
T.-C.
,
Cannon
,
D. M.
, Jr.
,
Shannon
,
M. A.
,
Bohn
,
P. W.
, and
Sweedler
,
J. V.
,
2003
, “
Hybrid Three-Dimensional Nanofluidic/Microfluidic Devices Using Molecular Gates
,”
Sens. Actuators, A
,
102
, pp.
223
233
.10.1016/S0924-4247(02)00394-1
10.
Jin
,
X.
,
Joseph
,
S.
,
Gatimu
,
E. N.
,
Bohn
,
P. W.
, and
Aluru
,
N. R.
,
2007
, “
Induced Electrokinetic Transport in Micro-Nanofluidic Interconnect Devices
,”
Langmuir
,
23
, pp.
13209
13222
.10.1021/la702326v
11.
Gatimu
,
E. N.
,
Jin
,
X.
,
Aluru
,
N. R.
, and
Bohn
,
P. W.
,
2008
, “
Perturbation of Microfluidic Transport Following Electrokinetic Injection Through a Nanocapillary Array Membrane: Injection and Biphasic Recovery
,”
J. Phys. Chem. C.
,
112
, pp.
19242
19247
.10.1021/jp806257d
12.
Mani
,
A.
,
Zangle
,
T. A.
, and
Santiago
,
J. G.
,
2009
, “
On the Propagation of Concentration Polarization From Microchannel-Nanochannel Interfaces. Part I. Analytical Model and Characteristic Analysis
,”
Langmuir
,
25
, pp.
3898
3908
.10.1021/la803317p
13.
Zangle
,
T. A.
,
Mani
,
A.
, and
Santiago
,
J. G.
,
2009
, “
On the Propagation of Concentration Polarization From Microchannel-Nanochannel Interfaces. Part II. Numerical and Experimental Study
,”
Langmuir
,
25
, pp.
3909
3916
.10.1021/la803318e
14.
Wang
,
Y.
,
Pant
,
K.
,
Chen
,
Z.
,
Wang
,
G.
,
Diffey
,
W. F.
,
Ashley
,
P.
, and
Sundaram
,
S.
,
2009
, “
Numerical Analysis of Electrokinetic Transport in Micro-Nanofluidic Interconnect Preconcentrator in Hydrodynamic Flow
,”
Microfluid. Nanofluid.
,
7
, pp.
683
696
.10.1007/s10404-009-0428-3
15.
Hatch
,
A. V.
,
Herr
,
A. E.
,
Throckmorton
,
D. J.
,
Brennan
,
J. S.
, and
Singh
,
A. K.
,
2006
, “
Integrated Preconcentration SDS-PAGE of Proteins in Microchips Using Photopatterned Cross-Linked Polyacrylamide Gels
,”
Anal. Chem.
,
78
, pp.
4976
4984
.10.1021/ac0600454
16.
Yossifon
,
G.
, and
Chang
,
H.-C.
,
2008
, “
Selection of Nonequilibrium Overlimiting Currents: Universal Depletion Layer Formation Dynamics and Vortex Instability
,”
Phys. Rev. Lett.
,
101
, p.
254501
.10.1103/PhysRevLett.101.254501
17.
Dukhin
,
S. S.
, and
Shilov
,
V. N.
,
1969
, “
Theory of Static Polarization of the Diffuse Part of the Thin Electric Double Layer of Spherical Particles
,”
Kolloidn. Zh.
,
31
, pp.
706
713
.
18.
Wang
,
Y. C.
, and
Han
,
J.
,
2008
, “
Pre-Binding Dynamic Range and Sensitivity Enhancement for Immuno-Sensors Using Nanofluidic Preconcentrator
,”
Lab Chip
,
8
, pp.
392
394
.10.1039/b717220f
19.
Vlassiouk
,
I.
,
Smirnov
,
S.
, and
Siwy
,
Z.
,
2008
, “
Ionic Selectivity of Single Nanochannels
,”
Nano Lett.
,
8
, pp.
1978
1985
.10.1021/nl800949k
20.
Rubinstein
,
I.
, and
Shtilman
,
L.
,
1979
, “
Voltage Against Current Curves of Cation Exchange Membranes
,”
J. Chem. Soc., Faraday Trans. 2
,
75
, pp.
231
246
.10.1039/f29797500231
21.
Kim
,
S. J.
,
Wang
,
Y.-C.
,
Lee
,
J. H.
,
Jang
,
H.
, and
Han
,
J.
,
2007
, “
Concentration Polarization and Nonlinear Electrokinetic Flow Near a Nanofluidic Channel
,”
Phys. Rev. Lett.
,
99
, p.
044501
.10.1103/PhysRevLett.99.044501
22.
Oddy
,
M. H.
,
Santiago
,
J. G.
, and
Mikkelsen
,
J. C.
,
2001
, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
,
73
, pp.
5822
5832
.10.1021/ac0155411
23.
Tang
,
G. H.
,
Li
,
Z.
,
Wang
,
J. K.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2006
, “
Electroosmotic Flow and Mixing in Microchannels With the Lattice Boltzmann Method
,”
J. Appl. Phys.
,
100
, p.
094908
.10.1063/1.2369636
24.
Ajdari
,
A.
,
2000
, “
Pumping Liquids Using Asymmetric Electrode Arrays
,”
Phys. Rev. E
,
61
, pp.
R45–R48
.10.1103/PhysRevE.61.R45
25.
Brown
,
A. B. D.
,
Smith
,
C. G.
, and
Rennie
,
A. R.
,
2001
, “
Pumping of Water With AC Electric Fields Applied to Asymmetric Pairs of Microelectrodes
,”
Phys. Rev. E
,
63
, p.
016305
.10.1103/PhysRevE.63.016305
26.
Ramos
,
A.
,
González
,
A.
,
Castellanos
,
A.
,
Green
,
N. G.
, and
Morgan
,
H.
,
2003
, “
Pumping of Liquids With AC Voltages Applied to Asymmetric Pairs of Microelectrodes
,”
Phys. Rev. E
,
67
, p.
056302
.10.1103/PhysRevE.67.056302
27.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes' Second Problem
,”
Anal. Chem.
,
73
, pp.
5097
5102
.10.1021/ac015546y
28.
Erickson
,
D.
, and
Li
,
D.
,
2003
, “
Analysis of Alternating Current Electroosmotic Flows in a Rectangular Microchannel
,”
Langmuir
,
19
, pp.
5421
5430
.10.1021/la027035s
29.
Chen
,
J. K.
,
Luo
,
W. J.
, and
Yang
,
R. J.
,
2006
, “
Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels
,”
Jpn. J. Appl. Phys.
,
45
, pp.
7983
7990
.10.1143/JJAP.45.7983
30.
Olesen
,
L. H.
,
Bazant
,
M. Z.
, and
Bruus
,
H.
,
2010
, “
Strongly Nonlinear Dynamics of Electrolytes Under Large AC Voltages
,”
Phys. Rev. E
,
82
, p.
011501
.10.1103/PhysRevE.82.011501
31.
Bhattacharyya
,
S.
, and
Nayak
,
A. K.
,
2008
, “
Time Periodic Electro-Osmotic Transport in a Charged Micro/Nanochannel
,”
Colloid. Surf. A
,
325
, pp.
152
159
.10.1016/j.colsurfa.2008.04.047
32.
Daiguji
,
H.
,
Yang
,
P.
, and
Majumdar
,
A.
,
2004
, “
Ion Transport in Nanofluidic Channels
,”
Nano Lett.
,
4
, pp.
137
142
.10.1021/nl0348185
33.
Daiguji
,
H.
,
Yang
,
P.
,
Szeri
,
A. J.
, and
Majumdar
,
A.
,
2004
, “
Electrochemomechanical Energy Conversion in Nanofluidic Channels
,”
Nano Lett.
,
4
, pp.
2315
2321
.10.1021/nl0489945
34.
Probstein
,
R. F.
,
1994
,
Physiochemical Hydrodynamics: An Introduction
,
John Wiley and Sons
,
New York
.
35.
Gross
,
R.
, and
Osterle
,
J.
,
1968
, “
Membrane Transport Characteristics of Ultrafine Capillaries
,”
J. Chem. Phys.
,
49
, pp.
228
234
.10.1063/1.1669814
36.
Wang
,
X.-L.
,
Tsuru
,
T.
,
Nakao
,
S.-I.
, and
Kimura
,
S.
,
1995
, “
Electrolyte Transport Through Nanofiltration Membranes by the Space-Charge Model and the Comparison With Teorell-Meyer-Sievers Model
,”
J. Membr. Sci.
,
103
, pp.
117
133
.10.1016/0376-7388(94)00317-R
37.
Yossifon
,
G.
,
Mushenheim
,
P.
,
Chang
,
Y. C.
, and
Chang
,
H.-C.
,
2009
, “
Nonlinear Current-Voltage Characteristics of Nano-Channels
,”
Phys. Rev. E
,
79
, p.
046305
.10.1103/PhysRevE.79.046305
38.
Chang
,
C. C.
, and
Yang
,
R. J.
,
2010
, “
Electrokinetic Energy Conversion in Micrometer-Length Nanofluidic Channels
,”
Microfluid. Nanofluid.
,
9
, pp.
225
241
.10.1007/s10404-009-0538-y
39.
OpenCFD Ltd., “
The Open Source CFD Toolbox
,” http://www.openfoam.com/
40.
Toro
,
E. F.
,
1999
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
41.
Versteeg
,
H. K.
, and
Malalasekra
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
2nd ed.
,
Pearson Education Ltd.
,
Essex
.
42.
Nandigana
,
V. V. R.
,
2011
, “
Nonlinear Electrokinetic Transport and Its Applications Under Combined AC and DC Fields in Micro/Nanofluidic Interface Devices
,” M.S. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
43.
Schoch
,
R. B.
,
van Lintel
,
H.
, and
Renaud
,
P.
,
2005
, “
Effect of the Surface Charge on Ion Transport Through Nanoslits
,”
Phys. Fluids
,
17
, p.
100604
.10.1063/1.1896936
44.
Wang
,
Y.-C.
,
Stevens
,
A. L.
, and
Han
,
J.
,
2005
, “
Million-Fold Preconcentration of Proteins and Peptides by Nanofluidic Filter
,”
Anal. Chem.
,
77
, pp.
4293
4299
.10.1021/ac050321z
45.
Nandigana
,
V. V. R.
, and
Aluru
,
N. R.
, 2010, “
Reaction Kinetics in Mirco/Nanofluidic Devices: Effect of Confinement and AC Voltage
,” 63rd Annual Meeting of the APS Division of Fluid Dynamics, Long Beach, CA, Nov. 21–23, Vol. 55, Abstract ID No. BAPS.2010.DFD.HP.3, http://meetings.aps.org/link/BAPS.2010.DFD.HP.3
You do not currently have access to this content.