Induced-charge electroosmosis (ICEO) around multiple gold-coated stainless steel rods under different ac electric fields is analyzed using microparticle image velocimetry (micro-PIV) and numerical simulations. In the present investigation, the induced electric double layer (EDL) is in weakly nonlinear limit. The ICEO flow around multiple touching rods exhibits geometry dependent quadrupolar flow structures with four vortices. The velocity magnitude is proportional to the square of the electric field. The ICEO flow velocity also depends on the cylinder orientation. The velocity increases with increased radial distance from the rod’s surface, attains a maximum, and then decays to zero. Experimental and numerical velocity distributions have the same trend beyond 0.2 mm of the rod’s surface.

References

References
1.
Waghmare
,
P. R.
, and
Mitra
,
S. K.
,
2008
, “
Investigation of Combined Electro-Osmotic and Pressure-Driven Flow in Rough Microchannels
,”
ASME J. Fluids Eng.
,
130
(6), p.
061204
.10.1115/1.2928333
2.
Levitan
,
J. A.
,
Devasenathipathy
,
S.
,
Studer
,
V.
,
Ben
,
Y.
,
Thorsen
,
T.
,
Squires
,
T. M.
, and
Bazant
,
M. Z.
,
2005
, “
Experimental Observation of Induced-Charge Electro-Osmosis Around a Metal Wire in a Microchannel
,”
Colloid. Surface. A
,
267
, pp.
122
132
.10.1016/j.colsurfa.2005.06.050
3.
Squires
,
T. M.
, and
Bazant
,
M. Z.
,
2006
, “
Breaking Symmetries in Induced-Charge Electro-Osmosis and Electrophoresis
,”
J. Fluid Mech.
,
560
, pp.
65
101
.10.1017/S0022112006000371
4.
Zhao
,
H.
, and
Bau
,
H. H.
,
2007
, “
Microfluidic Chaotic Stirrer Utilizing Induced-Charge Electro-Osmosis
,”
Phys. Rev. E
,
75
, p.
066217
.10.1103/PhysRevE.75.066217
5.
Harnett
,
C. K.
,
Templeton
,
J.
,
Dunphy-Guzman
,
K. A.
,
Senousy
,
Y. M.
, and
Kanouff
,
M. P.
,
2008
, “
Model Based Design of a Microfluidic Mixer Driven by Induced Charge Electroosmosis
,”
Lab Chip
,
8
, pp.
565
572
.10.1039/b717416k
6.
Wang
,
Y.
,
Zhe
,
J.
,
Dutta
,
P.
, and
Chung
,
B. T.
,
2007
, “
A Microfluidic Mixer Utilizing Electrokinetic Relay Switching and Asymmetric Flow Geometries
,”
ASME J. Fluids Eng.
,
129
(4), pp.
395
403
.10.1115/1.2436578
7.
Sanchez
,
P. G.
,
Ramos
,
A.
,
Gonzales
,
A.
,
Green
,
N. G.
, and
Morgan
,
H.
,
2009
, “
Flow Reversal in Travelling-Wave Electrokinetics: An Analysis of Forces
,”
Langmuir
,
25
(
9
), pp.
4988
4997
.10.1021/la803651e
8.
Yalcin
,
S. E.
,
Sharma
,
A.
,
Qian
,
S.
,
Joo
,
S. W.
, and
Baysal
,
O.
,
2010
, “
Manipulating Particles in Microfluidics by Floating Electrodes
,”
Electrophoresis
,
31
, pp.
3711
3718
.10.1002/elps.201000330
9.
Yalcin
,
S. E.
,
Sharma
,
A.
,
Qian
,
S.
,
Joo
,
S.W.
, and
Baysal
,
O.
,
2011
, “
On-Demand Particle Enrichment in a Microfluidic Channel by a Locally Controlled Floating Electrode
,”
Sensor. Actuat. B Chem.
,
153
, pp.
277
283
.10.1016/j.snb.2010.10.025
10.
Hunter
,
R. J.
,
1981
,
Zeta Potential in Colloid Science: Principles and Applications
,
Academic Press Inc.
,
NewYork
.
11.
Squires
,
T. M.
, and
Bazant
,
M. Z.
,
2004
, “
Induced-Charge Electro-Osmosis
,”
J. Fluid Mech.
,
509
, pp.
217
252
.10.1017/S0022112004009309
12.
Gamayunov
,
N. I.
,
Mantrov
,
G. I.
, and
Murtsovkin
,
V. A.
,
1992
, “
Study of Flows Induced in the Vicinity of Conducting Particles by an External Electric-Field
,”
Colloid J. USSR
,
54
, pp.
20
23
.
13.
Dukhin
,
S. S.
,
1993
, “
Non-Equilibrium Electric Surface Phenomena
,”
Adv. Colloid Interfac.
,
44
, pp.
1
134
.10.1016/0001-8686(93)80021-3
14.
Murtsovkin
,
V. A.
,
1996
, “
Nonlinear Flows Near Polarized Disperse Particles
,”
Colloid J.
,
58
, pp.
341
349
.
15.
Squires
,
T. M.
,
2009
, “
Induced-Charge Electrokinetics: Fundamental Challenges and Opportunities
,”
Lab Chip
,
9
, pp.
2477
2483
.10.1039/b906909g
16.
Bazant
,
M. Z.
,
Kilic
,
M. S.
,
Storey
,
B. D.
, and
Ajdari
,
A.
,
2009
, “
Towards an Understanding of Induced-Charge Electrokinetics at Large Applied Voltages in Concentrated Solution
,”
Adv. Colloid Interfac.
,
152
, pp.
48
88
.10.1016/j.cis.2009.10.001
17.
Bazant
,
M.
, and
Squires
,
T. M.
,
2010
, “
Induced-Charge Electrokinetic Phenomena
,”
Curr. Opin. Colloid In.
,
15
, pp.
203
213
.10.1016/j.cocis.2010.01.003
18.
Mansuripur
,
T.
,
Pascall
,
A. J.
, and
Squires
,
T. M.
,
2009
, “
Asymmetric Flows Over Symmetric Surfaces: Capacitive Coupling in Induced-Charge Electro-Osmosis
,”
New J. Phys.
,
11
, p.
075030
.10.1088/1367-2630/11/7/075030
19.
Canpolat
,
C.
,
Qian
,
S.
, and
Beskok
,
A.
,
2013
Micro-PIV Measurements of Induced-Charge Electro-Osmosis Around a Metal Rod
,”
Microfluid. Nanofluid.
,
14
(
1–2
), pp. 1
53
162
.10.1007/s10404-012-1033-4
20.
Sharp
,
K. V.
,
Yazdi
,
S. H.
, and
Davison
,
S.
,
2011
, “
Localized Flow Control in Microchannel Using Induced-Charge Electroosmosis Near Conductive Obstacles
,”
Microfluid. Nanofluid.
,
10
, pp.
1257
1267
.10.1007/s10404-010-0756-3
21.
Duffy
,
D. C.
,
McDonald
,
J. C.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
,
1998
, “
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)
,”
Anal. Chem.
,
70
, pp.
4974
4984
.10.1021/ac980656z
22.
González
,
A.
,
Ramos
,
A.
,
Green
,
N. G.
,
Castellanos
,
A.
, and
Morgan
,
H.
,
2000
, “
Fluid Flow Induced by Nonuniform ac Electric Fields in Electrolytes on Microelectrodes. II. A Linear Double-Layer Analysis
,”
Phys. Rev. E
,
61
, pp.
4019
4028
.10.1103/PhysRevE.61.4019
23.
Zhang
,
M.
,
Ai
,
Y.
,
Sharma
,
A.
,
Joo
,
S. W.
,
Kim
,
D. S.
, and
Qian
,
S.
,
2011
, “
Electrokinetic Particle Translocation Through a Nanopore Containing a Floating Electrode
,”
Electrophoresis
,
32
(
14
), pp.
1864
1874
.10.1002/elps.201100050
24.
Morgan
,
H.
, and
Green
,
N. G.
,
2003
,
AC Electrokinetics: Colloids and Nanoparticles
,
Research Studies Press Ltd.
,
Philadelphia
.
25.
Chang
,
H. S.
, and
Yeo
,
L. Y.
,
2010
,
Electrokinetically Driven Microfluidics and Nanofluidics
,
Cambridge University Press
,
New York
.
26.
Li
,
H.
, and
Olsen
,
M. G.
,
2006
, “
Aspect Ratio Effects on Turbulent and Transitional Flow in Rectangular Microchannels as Measured With MicroPIV,
ASME J. Fluids Eng.
,
128
(2), pp.
305
315
.10.1115/1.2170122
27.
Kim
,
M. J.
,
Beskok
,
A.
, and
Kihm
,
K. D.
,
2002
, “
Electro-Osmosis-Driven Micro-Channel Flows: A Comparative Study of Microscopic Particle Image Velocimetry Measurements and Numerical Simulations
,”
Exper. Fluids
,
33
, pp.
170
180
.10.1007/s00348-002-0449-0
28.
Ai
,
Y.
,
Joo
,
S. W.
,
Jiang
,
Y.
,
Xuan
,
X.
, and
Qian
,
S.
,
2009
, “
Transient Electrophoretic Motion of a Charged Particle Through a Converging-Diverging Microchannel: Effect of Direct Current Dielectrophoretic Force
,”
Electrophoresis
,
30
, pp.
2499
2506
.10.1002/elps.200800792
29.
Ai
,
Y.
,
Park
,
S.
,
Zhu
,
J.
,
Xuan
,
X.
,
Beskok
,
A.
, and
Qian
,
S.
,
2010
, “
DC Electrokinetic Particle Transport in an L-Shaped Microchannel
,”
Langmuir
,
26
(
4
), pp.
2937
2944
.10.1021/la902711x
30.
Williams
,
S. J.
,
Chamarthy
,
P.
, and
Wereley
,
S. T.
,
2010
, “
Comparison of Experiments and Simulation of Joule Heating in ac Electrokinetic Chips
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021103
.10.1115/1.4000740
31.
Park
,
S.
,
Koklu
,
M.
, and
Beskok
,
A.
,
2009
, “
Particle Trapping in High-Conductivity Media With Electrothermally Enhanced Negative Dielectrophoresis
,”
Anal. Chem.
,
81
(
6
), pp.
2303
2310
.10.1021/ac802471g
32.
Wang
,
D.
,
Sigurdson
,
M.
, and
Meinhart
,
C. D.
,
2005
, “
Experimental Analysis of Particle and Fluid Motion in ac Electrokinetics
,”
Exper. Fluids
,
38
, pp.
1
10
.10.1007/s00348-004-0864-5
33.
Studer
,
V.
,
Pépin
,
A.
,
Chen
,
Y.
, and
Ajdari
,
A.
,
2004
, “
An Integrated ac Electrokinetic Pump in a Microfluidic Loop for Fast Tunable Flow Control
,”
Analyst
,
129
, pp.
944
949
.10.1039/b408382m
34.
Storey
,
B. D.
,
Edwards
,
L. R.
,
Kilic
,
M. S.
, and
Bazant
,
M. Z.
,
2008
, “
Steric Effects on ac Electro-Osmosis in Dilute Electrolytes
,”
Phys. Rev. E
,
77
, p.
036317
.10.1103/PhysRevE.77.036317
You do not currently have access to this content.