This review article provides an overview of the experimental studies of in-cylinder flows using various flow measurement techniques with a focus on molecular tagging velocimetry. It is necessary to understand the evolution of large-scale and small-scale turbulence as prepared during the intake stroke with a cycle resolved quantitative description. Due to the difficulty in obtaining these descriptions, either by modeling or experimentally, they are often characterized with somewhat ambiguous notions of bulk swirl and tumble measurement methods. During the intake stroke, in-cylinder flows are formed in such a manner as to provide advantageous spatial and temporal behavior for mixture formation later during the compression stroke. Understanding the details of how these flows influence fuel-air mixing, the initiation of ignition, combustion, and subsequent flame propagation processes is the primary motivation for the development of the methods described in this paper. The authors provide an introduction to fundamental flow motion inside the engine cylinder and measurement techniques, e.g., hot-wire anemometry, laser Doppler anemometry, and particle image velocimetry. Furthermore, molecular tagging velocimetry is discussed in detail in terms of (i) different mechanisms, (ii) procedure and data reduction methods to obtain the desired flow properties such as velocity, vorticity, and turbulent intensities, and (iii) applications to flow studies in internal combustion engines. Finally, the significance of experimental investigations of in-cylinder flows is discussed along with possible future applications.

References

References
1.
Heywood
,
J. B.
,
1987
, “
Fluid Motion Within the Cylinder of Internal Combustion Engines—The 1986 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
109
, pp.
3
35
.10.1115/1.3242612
2.
Lee
,
D. W.
,
1938
, “
A Study of Air Flow in an Engine Cylinder
,” National Advisory Committee for Aeronautics, Langley Field, VA, Report No. 653.
3.
Lumley
,
J. L.
,
1999
,
Engines—An Introduction
,
Cambridge University Press
,
Cambridge, UK
, Chap. 5.
4.
Nordgren
,
H.
,
Hildingsson
,
L.
,
Johansson
,
B.
,
Dahlén
,
L.
, and
Konstanzer
,
D.
,
2003
, “
Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements
,” SAE Technical Paper No. 2003-01-3147.
5.
Fitzgeorge
,
D.
, and
Allison
,
J. L.
,
1962
, “
Air Swirl in a Road-Vehicle Diesel Engine
,”
Proc. Inst. Mech. Eng.
,
4
, pp.
151
168
.10.1243/PIME_AUTO_1962_000_020_02
6.
Tippelmann
,
G.
1977
, “
A New Method of Investigation of Swirl Ports
,” SAE Technical Paper No. 770404.
7.
Hill
,
P. G.
, and
Zhang
,
D.
,
1994
, “
The Effects of Swirl and Tumble on Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci
,
20
, pp.
373
429
.10.1016/0360-1285(94)90010-8
8.
Stone
,
C. R.
, and
Ladommatos
,
N.
,
1992
, “
The Measurement and Analysis of Swirl in Steady Flow
,” SAE Technical Paper No. 921642.
9.
Kim
,
M.
,
Lee
,
S.
, and
Kim
,
W.
,
2006
, “
Tumble Flow Measurements Using Three Different Methods and Its Effects on Fuel Economy and Emissions
,” SAE Technical Paper No. 2006-01-3345.
10.
Bellot
,
G. C.
,
1976
, “
Hot-Wire Anemometry
,”
Ann. Rev. Fluid Mech.
,
6
, pp.
209
231
.10.1146/annurev.fl.08.010176.001233
11.
Lancaster
,
D.
,
1976
, “
Effects of Engine Variables on Turbulence in a Spark-Ignition Engine
,” SAE Technical Paper No. 760159.
12.
Mittal
,
M.
,
2009
, “
Flow Measurements and In-Cylinder Combustion Diagnostics in an Internal Combustion Engine Assembly
,” Ph.D thesis, Michigan State University, East Lansing.
13.
Hassan
,
H.
, and
Dent
,
J. C.
,
1970
, “
The Measurement of Air Velocity in a Motored Internal Combustion Engine Using a Hot-Wire Anemometer
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
583
591
.10.1243/PIME_PROC_1970_185_065_02
14.
Benjamin
,
S. F.
,
1992
, “
A Phenomenological Model for ‘Barrel’ Swirl in Reciprocating Engines
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
206
, pp.
63
71
.10.1243/PIME_PROC_1992_206_161_02
15.
Miles
,
R. B.
, and
Lempert
,
W. R.
,
1997
, “
Quantitative Flow Visualization in Unseeded Flows
,”
Ann. Rev. Fluid Mech.
,
29
, pp.
285
326
.10.1146/annurev.fluid.29.1.285
16.
Morse
,
A. P.
, and
Whitelaw
,
J. H.
,
1981
, “
Measurements of the In-Cylinder Flow of a Motored Four-Stroke Reciprocating Engine
,”
Proc. R. Soc. London, Ser. A
,
377
, pp.
309
329
.10.1098/rspa.1981.0126
17.
Witze
,
P. O.
,
1980
, “
A Critical Comparison of Hot-Wire Anemometry and Laser Doppler Velocimetry for I.C. Engine Applications
,” SAE Technical Paper No. 800132.
18.
Rask
,
R.
,
1979
, “
Laser Doppler Anemometer Measurements in an Internal Combustion Engine
,” SAE Technical Paper No. 790094.
19.
Morse
,
A. P.
,
Whitelaw
,
J. H.
, and
Yianneskis
,
M.
,
1979
, “
Turbulent Flow Measurements by Laser-Doppler Anemometry in Motored Piston-Cylinder Assemblies
,”
ASME J. Fluids Eng.
,
101
, pp.
208
216
.10.1115/1.3448937
20.
Gany
,
A.
,
Larrea
,
J. J.
, and
Sirignano
,
W. A.
,
1980
, “
Laser-Doppler Velocimetry Measurements in a Motored I.C. Engine Simulator
,” AIAA Paper No. 80-0079.
21.
Ishima
,
T.
,
Obokata
,
T.
,
Nomura
,
T.
, and
Takahashi
,
Y.
,
2008
, “
Analysis on In-Cylinder Flow by Means of LDA, PIV and Numerical Simulation Under Steady State Flow Condition
,” SAE Technical Paper No. 2008-01-1063.
22.
Hall
,
M. J.
, and
Bracco
,
F. V.
,
1987
, “
A Study of Velocities and Turbulence Intensities Measured in Firing and Motored Engines
,” SAE Technical Paper No. 870453.
23.
Lee
,
K.
,
Yoo
,
S. C.
,
Stuecken
,
T.
,
McCarrick
,
D.
,
Schock
,
H.
,
Hamady
,
F.
,
LaPointe
,
L. A.
,
Keller
,
P.
, and
Hartman
,
P.
,
1993
, “
An Experimental Study of In-Cylinder Air Flow in a 3.5l Four-Valve SI Engine by High Speed Flow Visualization and Two-Component LDV Measurement
,” SAE Technical Paper No. 930478.
24.
Kang
,
K.
, and
Baek
,
J.
,
1996
, “
Tumble Flow and Turbulence Characteristics in a Small Four-Valve Engine
,” SAE Technical Paper No. 960265.
25.
Algieri
,
A.
,
Amelio
,
M.
, and
Bova
,
S.
,
2001
, “
Global and LDA Steady Flow Measurements in Two High-Performance I.C.E. Head Configurations
,” SAE Technical Paper No. 2001-24-0020.
26.
Miles
,
P.
,
Megerle
,
M.
,
Nagel
,
Z.
,
Reitz
,
R.
,
Lai
,
M. C. D.
, and
Sick
,
V.
,
2003
, “
An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine
,” SAE Technical Paper No. 2003-01-1072.
27.
Nomura
,
T.
,
Takahashi
,
Y.
,
Ishima
,
T.
, and
Obokata
,
T.
,
2004
, “
LDA and PIV Measurements and Numerical Simulation on In-Cylinder Flow Under Steady State Flow Condition
,”
12th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, pp.
1
17
.
28.
Schock
,
H. J.
,
Regan
,
C. A.
,
Rice
,
W. J.
, and
Chlebecek
,
R.
,
1983
, “
Multi-Component Velocity Measurement in a Piston-Cylinder Configuration
,” NASA Lewis Research Center, Cleveland, OH, NASA Technical Memo. No. 83534.
29.
Hascher
,
H. G.
,
Jaffri
,
K.
,
Novak
,
M.
,
Lee
,
K.
,
Schock
,
H.
,
Bonne
,
M.
, and
Keller
,
P.
,
1997
, “
An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four Valve 3.5L SI Engine Using 3-D LDV Measurements
,” SAE Paper No. 970793.
30.
Yoo
,
S.
,
Lee
,
K.
,
Novak
,
M.
,
Schock
,
H.
, and
Keller
,
P.
,
1995
, “
3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine
,” SAE Technical Paper No. 950648.
31.
Jaffri
,
K.
,
Hascher
,
H.
,
Novak
,
M.
,
Lee
,
K.
,
Schock
,
H.
,
Bonne
,
M.
, and
Keller
,
P.
,
1997
, “
Tumble and Swirl Quantification Within a Motored Four-Valve SI Engine Cylinder Based on 3-D LDV Measurements
,” SAE Technical Paper No. 970792.
32.
Hascher
,
H.
,
Schock
,
H.
,
Avanessian
,
O.
, and
Novak
,
J.
,
2000
, “
A Comparison of Modeled and Measured 3-D In-Cylinder Charge Motion Throughout the Displacement of a Four-Valve SI Engine
,” SAE Technical Paper No. 2000-01-2799.
33.
Chan
,
V. S. S.
, and
Turner
,
J. T.
,
2000
, “
Velocity Measurement Inside a Motored Internal Combustion Engine Using Three-Component Laser Doppler Anemometry
,”
Opt. Laser Technol.
,
32
, pp.
557
566
.10.1016/S0030-3992(00)00097-9
34.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Ann. Rev. Fluid Mech.
,
23
, pp.
261
304
.10.1146/annurev.fl.23.010191.001401
35.
Grant
,
I.
,
1997
, “
Particle Image Velocimetry: A Review
,”
J. Mech. Eng. Sci.
,
211
, pp.
55
76
.10.1243/0954406971521665
36.
Reeves
,
M.
,
Haste
,
M. J.
,
Garner
,
C. P.
, and
Halliwell
,
N. A.
,
1999
, “
Barrel Swirl Breakdown in Spark-Ignition Engines: Insights From Particle Image Velocimetry Measurements
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
213
, pp.
595
609
.10.1243/0954407991527134
37.
Jarvis
,
S.
,
Justham
,
T.
,
Clarke
,
A.
,
Garner
,
C. P.
,
Hargrave
,
G. K.
, and
Halliwell
,
N. A.
,
2006
, “
Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine
,”
J. Phys.: Conf. Ser.
,
45
, pp.
38
45
.10.1088/1742-6596/45/1/007
38.
Stansfield
,
P.
,
Wigley
,
G.
,
Justham
,
T.
,
Catto
,
J.
, and
Pitcher
,
G.
,
2007
, “
PIV Analysis of In-Cylinder Flow Structures Over a Range of Realistic Engine Speeds
,”
Exp. Fluids
,
43
, pp.
135
146
.10.1007/s00348-007-0335-x
39.
Pust
,
O.
,
2000
, “
PIV: Direct Cross-Correlation Compared With FFT-Based Cross-Correlation
,”
Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, pp.
1
12
.
40.
Wereley
,
S. T.
, and
Meinhart
,
C. D.
,
2001
, “
Second-Order Accurate Particle Image Velocimetry
,”
Exp. Fluids
,
31
, pp.
258
268
.10.1007/s003480100281
41.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1993
, “
Theory and Simulation of Particle Image Velocimetry
,”
Proc. SPIE
,
2052
, pp.
477
492
.10.1117/12.150541
42.
McKenna
,
S. P.
, and
McGillis
,
W. R.
,
2002
, “
Performance of Digital Image Velocimetry Processing Techniques
,”
Exp. Fluids
,
32
, pp.
106
115
.10.1007/s003480200011
43.
Nobach
,
H.
,
Damaschke
,
N.
, and
Tropea
,
C.
,
2005
, “
High-Precision Sub-Pixel Interpolation in Particle Image Velocimetry Image Processing
,”
Exp. Fluids
,
39
, pp.
299
304
.10.1007/s00348-005-0999-z
44.
Eckstein
,
A.
, and
Vlachos
,
P. P.
,
2009
, “
Assessment of Advanced Windowing Techniques for Digital Particle Image Velocimetry (DPIV)
,”
Meas. Sci. Technol.
,
20
(
7
), p.
075402
.10.1088/0957-0233/20/7/075402
45.
Stanislas
,
M.
,
Okamoto
,
K.
,
Kähler
,
C. J.
, and
Westerweel
,
J.
,
2005
, “
Main Results of the Second International PIV Challenge
,”
Exp. Fluids
,
39
, pp.
170
191
.10.1007/s00348-005-0951-2
46.
Eckstein
,
A.
, and
Vlachos
,
P. P.
,
2009b
, “
Digital Particle Image Velocimetry (DPIV) Robust Phase Correlation
,”
Meas. Sci. Technol.
,
20
(
5
), p.
055401
.10.1088/0957-0233/20/5/055401
47.
Sciacchitano
,
A.
,
Scarano
,
F.
, and
Wieneke
,
B.
,
2012
, “
Multi-Frame Pyramid Correlation for Time-Resolved PIV
,”
Exp. Fluids
,
4
, pp.
1087
1105
.10.1007/s00348-012-1345-x
48.
Konrath
,
R.
,
Schroder
,
W.
, and
Limberg
,
W.
,
2002
, “
Holographic Particle Image Velocimetry Applied to the Flow Within the Cylinder of a Four-Valve Internal Combustion Engine
,”
Exp. Fluids
,
33
, pp.
781
793
.10.1007/s00348-002-0495-7
49.
Overbruggen
,
T. V.
,
Dannemann
,
J.
,
Klaas
,
M.
, and
Schroder
,
W.
,
2012
, “
Holographic Particle-Image Velocimetry Measurements in a Four-Valve Combustion Engine
,”
16th International Symposium on Application of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, pp.
1
11
.
50.
Calendini
,
P.
,
Duverger
,
T.
,
Lecerf
,
A.
, and
Trinite
,
M.
,
2000
, “
In-Cylinder Velocity Measurements With Stereoscopic Particle Image Velocimetry in a SI engine
,” SAE Technical Paper No. 2000-01-1798.
51.
Ramsey
,
M. C.
, and
Pitz
,
R. W.
,
2011
, “
Template Matching for Improved Accuracy in Molecular Tagging Velocimetry
,”
Exp. Fluids
,
51
, pp.
811
819
.10.1007/s00348-011-1098-y
52.
Popovich
,
A. T.
, and
Hummel
,
R. L.
,
1967
, “
A New Method for Non-Disturbing Turbulent Flow Measurements Very Close to Wall
,”
Chem. Eng. Sci.
,
22
, pp.
21
25
.10.1016/0009-2509(67)80100-3
53.
Yurechko
,
V. N.
, and
Ryazantsev
,
Y. S.
,
1991
, “
Fluid Motion Investigation by the Photochromic Visualization Technique
,”
Exp. Therm Fluid Sci.
,
4
, pp.
273
288
.10.1016/0894-1777(91)90045-S
54.
Gendrich
,
C. P.
,
Koochesfahani
,
M. M.
, and
Nocera
,
D. G.
,
1997
, “
Molecular Tagging Velocimetry and Other Novel Applications of a New Phosphorescent Supramolecule
,”
Exp. Fluids
,
23
, pp.
361
372
.10.1007/s003480050123
55.
Koochesfahani
,
M. M.
,
Cohn
,
R. K.
,
Gendrich
,
C. P.
, and
Nocera
,
D. G.
,
1996
, “
Molecular Tagging Diagnostics for the Study of Kinematics and Mixing in Liquid Phase Flows
,”
(Invited Plenary Paper), Proceedings of the Eighth International Symposium on Applications of Laser Techniques to Fluids Mechanics
,
Lisbon, Portugal
, Vol.
I
, pp.
1.2.1
1.2.12
.
56.
Koochesfahani
,
M. M.
, and
Nocera
,
D. G.
,
2007
,
Springer Handbook of Experimental Fluid Dynamics
,
Springer
,
Heidelberg
, Chap. 5.4.
57.
Miles
,
R. B.
,
Connors
,
J. J.
,
Markovitz
,
E. C.
,
Howard
,
P. J.
, and
Roth
,
G. J.
,
1989
, “
Instantaneous Profiles and Turbulence Statistics of Supersonic Free Shear Layers by Raman Excitation Plus Laser-Induced Electronic Fluorescence (Relief) Velocity Tagging of Oxygen
,”
Exp. Fluids
,
8
, pp.
17
24
.10.1007/BF00203060
58.
Pitz
,
R. W.
,
Wehrmeyer
,
J. A.
,
Ribarov
,
L. A.
,
Oguss
,
D. A.
,
Batliwala
,
F.
,
DeBarber
,
P. A.
,
Deusch
,
S.
, and
Dimotakis
,
P. E.
,
2000
, “
Unseeded Molecular Flow Tagging in Cold and Hot Flows Using Ozone and Hydroxyl Tagging Velocimetry
,”
Meas. Sci. Technol.
,
11
, pp.
1259
1271
.10.1088/0957-0233/11/9/303
59.
Falco
,
R. E.
,
1994
, “
Implementation and Measurement With the LIPA Technique in a Subsonic Jet
,” Michigan State University, East Lansing, MI, Technical Report, NASA Contractor Report No. CR-178152.
60.
Stier
,
B.
, and
Koochesfahani
,
M. M.
,
1999
, “
Molecular Tagging Velocimetry (MTV) Measurements in Gas Phase Flows
,”
Exp. Fluids
,
26
, pp.
297
304
.10.1007/s003480050292
61.
Sidebottom
,
H. W.
,
Badcock
,
C. C.
,
Calvert
,
J. G.
,
Rabe
,
B. R.
, and
Damon
,
E. K.
,
1972
, “
Lifetime Studies of the Biacetyl Excited Singlet and Triplet States in the Gas Phase at 25Deg.
,”
J. Am. Chem. Soc.
,
94
, pp.
13
19
.10.1021/ja00756a003
62.
Krüger
,
S.
, and
Grünefeld
,
G.
,
1999
, “
Stereoscopic Flow-Tagging Velocimetry
,”
Appl. Phys. B: Lasers Opt.
,
69
, pp.
509
512
.10.1007/s003400050844
63.
Orlemann
,
C.
,
Schulz
,
C.
, and
Wolfrum
,
J.
,
1999
, “
NO Flow-Tagging by Photodissociation of NO2—A New Approach for Measuring Small-Scale Flow Structures
,”
Chem. Phys. Lett.
,
307
, pp.
15
20
.10.1016/S0009-2614(99)00512-6
64.
Pitz
,
R. W.
, and
ElBaz
,
A. M.
,
2012
, “
N2O Molecular Tagging Velocimetry
,”
Appl. Phys. B: Lasers Opt.
,
106
, pp.
961
969
.10.1007/s00340-012-4872-5
65.
Gendrich
,
C. P.
, and
Koochesfahani
,
M. M.
,
1996
, “
A Spatial Correlation Technique for Estimating Velocity Fields Using Molecular Tagging Velocimetry (MTV)
,”
Exp. Fluids
,
22
, pp.
67
77
.10.1007/BF01893307
66.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z. C.
,
1997
, “
Distortion Compensation in Stereoscopic PIV
,”
Meas. Sci. Technol.
,
8
, pp.
1441
1454
.10.1088/0957-0233/8/12/008
67.
Spath
,
H.
,
1996
, “
Least-Squares Fitting by Circles
,”
Computing
,
57
, pp.
179
185
.10.1007/BF02276879
68.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1995
, “
Image Correlation Velocimetry
,”
Exp.Fluids
,
19
, pp.
1
15
.10.1007/BF00192228
69.
Hill
,
R. B.
, and
Klewicki
,
J. C.
,
1996
, “
Data Reduction Methods for Flow Tagging Velocity Measurements
,”
Exp. Fluids
,
20
, pp.
142
152
.10.1007/BF00190270
70.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1992
, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
,
41
, pp.
191
215
.10.1007/BF00384623
71.
Zheng
,
Q.
, and
Klewicki
,
J. C.
,
2000
, “
A Fast Data Reduction Algorithm for Molecular Tagging Velocimetry: The Decoupled Spatial Correlation Technique
,”
Meas. Sci. Technol.
,
11
, pp.
1282
1288
.10.1088/0957-0233/11/9/305
72.
Mittal
,
M.
,
Sadr
,
R.
,
Schock
,
H. J.
,
Fedewa
,
A.
, and
Naqwi
,
A.
,
2009
, “
In-Cylinder Engine Flow Measurement Using Stereoscopic Molecular Tagging Velocimetry (SMTV)
,”
Exp. Fluids
,
46
, pp.
277
284
.10.1007/s00348-008-0557-6
73.
Bohl
,
D. G.
,
Koochesfahani
,
M. M.
, and
Olson
,
B. J.
,
2001
, “
Development of Stereoscopic Molecular Tagging Velocimetry
,”
Exp. Fluids
,
30
, pp.
302
308
.10.1007/s003480000178
74.
Naqwi
,
A.
,
2000
, “
Distortion Compensation for PIV Systems
,”
10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, Paper No. 6.2.
75.
Prasad
,
A. K.
, and
Jensen
,
K.
,
1995
, “
Scheimpflug Stereocamera for Particle Image Velocimetry in Liquid Flows
,”
Appl. Opt.
,
34
, pp.
7092
7099
.10.1364/AO.34.007092
76.
Schock
,
H.
,
Shen
,
Y.
,
Timm
,
E.
,
Stuecken
,
T.
,
Fedewa
,
A.
, and
Keller
,
P.
,
2003
, “
The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly
,” SAE Technical Paper No. 2003-01-1357.
77.
Urushihara
,
T.
,
Nakada
,
T.
,
Kakuhou
,
A.
, and
Takagi
,
Y.
,
1996
, “
Effects of Swirl/Tumble Motion on In-Cylinder Mixture Formation in a Lean-Burn Engine
,” SAE Technical Paper No. 961994.
78.
Lee
,
D.
, and
Heywood
,
J.
,
2006
, “
Effects of Charge Motion Control During Cold Start of SI Engines
,” SAE Technical Paper No. 2006-01-3399.
79.
Mittal
,
M.
, and
Schock
,
H. J.
,
2010
, “
A Study of Cycle-to-Cycle Variations and the Influence of Charge Motion Control on In-Cylinder Flow in an IC Engine
,”
ASME J. Fluids Eng.
,
132
, p.
051107
.10.1115/1.4001617
80.
Goh
,
A. C. H.
,
2001
, “
Active Flow Control for Maximizing Performance of Spark-Ignited Stratified Charge Engines
,” M.S. thesis, Michigan State University, East Lansing, MI.
81.
Ismailov
,
M. M.
,
Schock
,
H. J.
, and
Fedewa
,
A. M.
,
2006
, “
Gaseous Flow Measurements in an Internal Combustion Engine Assembly Using Molecular Tagging Velocimetry
,”
Exp. Fluids
,
41
, pp.
57
65
.10.1007/s00348-006-0150-9
82.
Fuyuto
,
T.
,
Matsumoto
,
T.
,
Hattori
,
Y.
,
Kugimoto
,
K.
,
Fujikawa
,
T.
,
Akihama
,
K.
, and
Ito
,
H.
,
2012
, “
A New Generation of Optically Accessible Single-Cylinder Engines for High-Speed and High-Load Combustion Analysis
,”
SAE Int. J. Fuels Lubr.
,
5
(
1
), pp.
307
315
.10.4271/2011-01-2050
You do not currently have access to this content.