A three-dimensional (3D), multiphase lattice Boltzmann approach is used to study a pressure-driven displacement flow of two immiscible liquids of different densities and viscosities in a square duct. A three-dimensional, 15-velocity (D3Q15) lattice model is used. The effects of channel inclination, viscosity, and density contrasts are investigated. The contours of the density and the average viscosity profiles in different planes are plotted and compared with those obtained in a two-dimensional (2D) channel. We demonstrate that the flow dynamics in a 3D channel is quite different as compared to that of a 2D channel. We found that the flow is relatively more coherent in a 3D channel than that in a 2D channel. A new screw-type instability is seen in the 3D channel that cannot be observed in the 2D channel.

References

References
1.
Redapangu
,
P. R.
,
Sahu
,
K. C.
, and
Vanka
,
S. P.
,
2012
, “
A Study of Pressure-Driven Displacement Flow of Two Immiscible Liquids Using a Multiphase Lattice Boltzmann Approach
,”
Phys. Fluids
,
24
, p.
102110
.10.1063/1.4760257
2.
Joseph
,
D. D.
,
Bai
,
R.
,
Chen
,
K. P.
, and
Renardy
,
Y. Y.
,
1997
, “
Core-Annular Flows
,”
Ann. Rev. Fluid Mech.
,
29
, pp.
65
90
.10.1146/annurev.fluid.29.1.65
3.
Whitehead
,
J. A.
, and
Helfrich
,
K. R.
,
1991
, “
Instability of the Flow With Temperature-Dependent Viscosity: A Model of Magma Dynamics
,”
J. Geophysical Res.
,
96
, pp.
4145
4155
.10.1029/90JB02342
4.
Homsy
,
G. M.
,
1987
, “
Viscous Fingering in Porous Media
,”
Ann. Rev. Fluid Mech.
,
19
, pp.
271
311
.10.1146/annurev.fl.19.010187.001415
5.
Chen
,
C.-Y.
, and
Meiburg
,
E.
,
1996
, “
Miscible Displacement in Capillary Tubes. Part 2. Numerical Simulations
,”
J. Fluid Mech.
,
326
, pp.
57
90
.10.1017/S0022112096008245
6.
Rakotomalala
,
N.
,
Salin
,
D.
, and
Watzky
,
P.
,
1997
, “
Miscible Displacement Between Two Parallel Plates: BGK Lattice Gas Simulations
,”
J. Fluid Mech.
,
338
, pp.
277
297
.10.1017/S0022112097004928
7.
Goyal
,
N.
, and
Meiburg
,
E.
,
2006
, “
Miscible Displacements in Hele-Shaw Cells: Two-Dimensional Base States and Their Linear Stability
,”
J. Fluid Mech.
,
558
, pp.
329
355
.10.1017/S0022112006009992
8.
Petitjeans
,
P.
, and
Maxworthy
,
P.
,
1996
, “
Miscible Displacements in Capillary Tubes. Part 1. Experiments
,”
J. Fluid Mech.
,
326
, pp.
37
56
.10.1017/S0022112096008233
9.
Sahu
,
K. C.
,
Ding
,
H.
,
Valluri
,
P.
, and
Matar
,
O. K.
,
2009
, “
Linear Stability Analysis and Numerical Simulation of Miscible Channel Flows
,”
Phys. Fluids
,
21
, p.
042104
.10.1063/1.3116285
10.
Sahu
,
K. C.
,
Ding
,
H.
,
Valluri
,
P.
, and
Matar
,
O. K.
,
2009
, “
Pressure-Driven Miscible Two-Fluid Channel Flow With Density Gradients
,”
Phys. Fluids
,
21
, p.
043603
.10.1063/1.3122779
11.
Taghavi
,
S. M.
Séon
,
T.
Martinez
,
D. M.
and
Frigaard
,
I. A.
,
2009
, “
Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit
”.
J. Fluid Mech.
,
639
, pp.
1
35
.10.1017/S0022112009990620
12.
Taghavi
,
S. M.
,
Séon
,
T.
,
Martinez
,
D. M.
, and
Frigaard
,
I. A.
,
2011
, “
Stationary Residual Layers in Buoyant Newtonian Displacement Flows
,”
Phys. Fluids
,
23
, p.
044105
.10.1063/1.3581063
13.
Mishra
,
M.
,
Wit
,
A. D.
, and
Sahu
,
K. C.
,
2012
, “
Double Diffusive Effects on Pressure-Driven Miscible Displacement Flow in a Channel
,”
J. Fluid Mech.
,
712
, pp.
579
597
.10.1017/jfm.2012.439
14.
Talon
,
L.
,
Goyal
,
N.
, and
Meiburg
,
E.
,
2013
, “
Variable Density and Viscosity, Miscible Displacements in Horizontal Hele-Shaw Cells. Part 1. Linear Stability Analysis
,”
J. Fluid Mech.
,
721
, pp.
268
294
.10.1017/jfm.2013.63
15.
Talon
,
L.
,
Goyal
,
N.
, and
Meiburg
,
E.
,
2013
, “
Variable Density and Viscosity, Miscible Displacements in Horizontal Hele-Shaw Cells. Part 1. Nonlinear Simulations
,”
J. Fluid Mech.
,
721
, pp.
295
323
.10.1017/jfm.2013.63
16.
Joseph
,
D. D.
,
Renardy
,
M.
, and
Renardy
,
Y. Y.
,
1984
, “
Instability of the Flow of Two Immiscible Liquids With Different Viscosities in a Pipe
,”
J. Fluid Mech.
,
141
, pp.
309
317
.10.1017/S0022112084000860
17.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2004
, “
Immiscible Displacement in a Channel: Simulations of Fingering in Two Dimensions
,”
Adv. Water Resour.
,
27
, pp.
13
22
.10.1016/j.advwatres.2003.10.002
18.
Chin
,
J.
,
Boek
,
E. S.
, and
Coveney
,
P. V.
,
2002
, “
Lattice Boltzmann Simulation of the Flow of Binary Immiscible Fluids With Different Viscosities Using the Shan-Chen Microscopic Interaction Model
,”
Phil. Trans. R. Soc. London
,
360
, pp.
547
558
.10.1098/rsta.2001.0953
19.
Grosfils
,
P.
,
Boon
,
J. P.
, and
Chin
,
J.
,
2004
, “
Structural and Dynamical Characterization of Hele-Shaw Viscous Fingering
,”
Phil. Trans. R. Soc. London
,
362
, pp.
1723
1734
.10.1098/rsta.2004.1398
20.
Dong
,
B.
,
Yan
,
Y. Y.
,
Li
,
W.
, and
Song
,
Y.
,
2010
, “
Lattice Boltzmann Simulation of Viscous Fingering Phenomenon of Immiscible Fluids Displacement in a Channel
,”
Comput. Fluids
,
39
, pp.
768
779
.10.1016/j.compfluid.2009.12.005
21.
Lajeunesse
,
E.
,
Martin
,
J.
,
Rakotomalala
,
N.
,
Salin
,
D.
, and
Yortsos
,
Y. C.
,
1999
, “
Miscible Displacement in a Hele-Shaw Cell at High Rates
,”
J. Fluid Mech.
,
398
, pp.
299
319
.10.1017/S0022112099006357
22.
Sahu
,
K. C.
,
Ding
,
H.
, and
Matar
,
O. K.
,
2010
, “
Numerical Simulation of Non-isothermal Pressure-Driven Miscible Channel Flow With Viscous Heating
,”
Chem. Eng. Sci.
,
65
, pp.
3260
3267
.10.1016/j.ces.2010.02.017
23.
Govindarajan
,
R.
, and
Sahu
,
K. C.
,
2014
, “
Instabilities in Viscosity Stratified Flow
,”
Ann. Rev. Fluid Mech.
(to be published).
24.
Yih
,
C. S.
,
1967
, “
Instability Due to Viscous Stratification
,”
J. Fluid Mech.
,
27
, pp.
337
352
.10.1017/S0022112067000357
25.
Yiantsios
,
S. G.
, and
Higgins
,
B. G.
,
1988
, “
Linear Stability of Plane Poiseuille Flow of Two Superposed Fluids
,”
Phys. Fluids
,
31
, pp.
3225
3238
.10.1063/1.866933
26.
Hooper
,
A. P.
, and
Boyd
,
W. G. C.
,
1983
, “
Shear Flow Instability at the Interface Between Two Fluids
,”
J. Fluid Mech.
,
128
, pp.
507
528
.10.1017/S0022112083000580
27.
South
,
M. J.
, and
Hooper
,
A. P.
,
2001
, “
Linear Growth in Two-Fluid Plane Poiseuille Flow
,”
J. Fluid Mech.
,
381
, pp.
121
139
.10.1017/S0022112098003577
28.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Ann. Rev. Fluid Mech.
,
30
, pp.
329
364
.10.1146/annurev.fluid.30.1.329
29.
Gunstensen
,
A. K.
,
Rothman
,
D. H.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1991
, “
Lattice Boltzmann Model for Immiscible Fluids
,”
Phys. Rev. A
,
43
, pp.
4320
4327
.10.1103/PhysRevA.43.4320
30.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.10.1103/PhysRevE.47.1815
31.
Swift
,
M. R.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
,
1995
, “
Lattice-Boltzmann Simulation of Nonideal Fluids
,”
Phys. Rev. Lett.
,
75
, pp.
830
833
.10.1103/PhysRevLett.75.830
32.
Zhang
,
R.
,
He
,
X.
, and
Chen
,
S.
,
2000
, “
Interface and Surface Tension in Incompressible Lattice Boltzmann Multiphase Model
,”
Comput. Phys. Commun.
,
129
, pp.
121
130
.10.1016/S0010-4655(00)00099-0
33.
He
,
X.
,
Zhang
,
R.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1999
, “
On the Three-Dimensional Rayleigh-Taylor Instability
,”
Phys. Fluids
,
11
(
5
), pp.
1143
1152
.10.1063/1.869984
34.
He
,
X.
,
Chen
,
S.
, and
Zhang
,
R.
,
1999
, “
A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability
,”
J. Comput. Phys.
,
152
, pp.
642
663
.10.1006/jcph.1999.6257
35.
Langaas
,
K.
, and
Yeomans
,
J. M.
,
2000
, “
Lattice Boltzmann Simulation of a Binary Fluid With Different Phase Viscosities and Its Application to Fingering in Two-Dimensions
,”
Eur. Phys. J. B
,
15
, pp.
133
141
.10.1007/s100510051107
36.
Riaz
,
A.
, and
Meiburg
,
E.
,
2003
, “
Three-Dimensional Miscible Displacement Simulations in Homogeneous Porous Media With Gravity Override
,”
J. Fluid Mech.
,
494
, pp.
95
117
.10.1017/S0022112003005974
37.
Oliveira
,
R. M.
, and
Meiburg
,
E.
,
2011
, “
Miscible Displacements in Hele-Shaw Cells: Three-Dimensional Navier-Stokes Simulations
,”
J. Fluid Mech.
,
687
, pp.
431
460
.10.1017/jfm.2011.367
38.
Hallez
,
Y.
, and
Magnaudet
,
J.
,
2008
, “
Effects of Channel Geometry on Buoyancy-Driven Mixing
,”
Phys. Fluids
,
20
, p.
053306
.10.1063/1.2918379
39.
Vanka
,
S. P.
,
Shinn
,
A. F.
, and
Sahu
,
K. C.
,
2011
, “
Computational Fluid Dynamics Using Graphics Processing Units: Challenges and Opportunities
,”
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition
,
Denver, CO
, Nov. 11–17.
40.
Redapangu
,
P. R.
,
Vanka
,
S. P.
, and
Sahu
,
K. C.
,
2012
, “
Multiphase Lattice Boltzmann Simulations of Buoyancy-Induced Flow of Two Immiscible Fluids With Different Viscosities
,”
Eur. J. Mech. B/Fluids
,
34
, pp.
105
114
.10.1016/j.euromechflu.2012.01.006
41.
Sahu
,
K. C.
, and
Vanka
,
S. P.
,
2011
, “
A Multiphase Lattice Boltzmann Study of Buoyancy-Induced Mixing in a Tilted Channel
,”
Comput. Fluids
,
50
, pp.
199
215
.10.1016/j.compfluid.2011.07.012
42.
Lee
,
T.
, and
Lin
,
C.-L.
,
2005
, “
A Stable Discretization of the Lattice Boltzmann Equation for Simulation of Incompressible Two-Phase Flows at High Density Ratio
,”
J. Comput. Phys
,
206
, pp.
16
47
.10.1016/j.jcp.2004.12.001
43.
Carnahan
,
N. F.
, and
Starling
,
K. E.
,
1969
, “
Equation of State for Non-attracting Rigid Spheres
,”
J. Chem. Phys.
,
51
, pp.
635
636
.10.1063/1.1672048
44.
Premnath
,
K. N.
, and
Abraham
,
J.
,
2005
, “
Lattice Boltzmann Model for Axisymmetric Multiphase Flows
,”
Phys. Rev. E
,
71
, p.
056706
.10.1103/PhysRevE.71.056706
45.
Evans
,
R.
,
1979
, “
The Nature of the Liquid-Vapor Interface and Other Topics in the Statistical Mechanics of Non-uniform Classical Fluids
,”
Adv. Phys.
,
28
, pp.
143
200
.10.1080/00018737900101365
46.
Selvam
,
B.
,
Merk
,
S.
,
Govindarajan
,
R.
, and
Meiburg
,
E.
,
2007
, “
Stability of Miscible Core-Annular Flows With Viscosity Stratification
,”
J. Fluid Mech.
,
592
, pp.
23
49
.10.1017/S0022112007008269
47.
Scoffoni
,
J.
,
Lajeunesse
,
E.
, and
Homsy
,
G. M.
,
2001
, “
Interface Instabilities During Displacement of Two Miscible Fluids in a Vertical Pipe
,”
Phys. Fluids
,
13
, pp.
553
556
.10.1063/1.1343907
48.
Hooper
,
A. P.
, and
Grimshaw
,
R.
,
1985
, “
Nonlinear Instability at the Interface Between Two Viscous Fluids
,”
Phys. Fluids
,
28
(
1
), pp.
37
45
.10.1063/1.865160
You do not currently have access to this content.