In this study, the flow and heat transfer of Powell–Eyring fluid over a permeable stretching surface is examined. By using Lie group analysis, the symmetries of the equations are found. Four finite parameter and one infinite parameter Lie group of transformations are obtained. Similarity transformations for the problem are derived with help of these symmetries. The governing system of partial differential equations is transformed to a system of ordinary differential equations by using the similarity transformations. These equations are solved numerically using the Keller-box method. A comparison is performed with analytical results as well as previously published work, and an excellent agreement is observed between the results. The effects of governing parameters on the velocity and temperature profiles, the skin friction, and local Nusselt number are analyzed and discussed. It is observed that both the skin friction and local Nusselt number increase due to an increase in suction/injection parameter fw. The effects of the Prandtl number Pr, temperature power index m, and fluid parameter ε are found to increase the local Nusselt number whereas the effect of the fluid parameter δ is to decrease it. The obtained results elucidate that the skin friction reduces with increase in ε while opposite behavior is noticed for increasing values of δ.

References

References
1.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surfaces: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
AIChE J.
,
7
, pp.
26
28
.10.1002/aic.690070108
2.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surfaces: II. The Boundary Layer on a Continuous Flat Surface
,”
AIChE J.
,
7
, pp.
221
225
.10.1002/aic.690070211
3.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
, pp.
645
647
.10.1007/BF01587695
4.
Fox
,
V. G.
,
Erickson
,
L. E.
, and
Fan
,
L. T.
,
1969
, “
Methods for Solving the Boundary Layer Equations for Moving Continuous Flat Surfaces With Suction and Injection
,”
AIChE J.
,
14
, pp.
726
736
.10.1002/aic.690140510
5.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.10.1002/cjce.5450550619
6.
Fang
,
T.
,
2008
, “
Flow and Heat Transfer Characteristics of the Boundary Layers Over a Stretching Surface With a Uniform-Shear Free Stream
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2199
2213
.10.1016/j.ijheatmasstransfer.2007.11.013
7.
Bataller
,
R. C.
,
2008
, “
Similarity Solutions for Flow and Heat Transfer of a Quiescent Fluid Over a Nonlinearly Stretching Surface
,”
J. Mater. Process. Technol.
,
203
, pp.
176
183
.10.1016/j.jmatprotec.2007.09.055
8.
Cortell
,
R.
,
2011
, “
Heat and Fluid Flow due to Non-Linearly Stretching Surfaces
,”
Appl. Math. Comput.
,
217
, pp.
7564
7572
.10.1016/j.amc.2011.02.029
9.
Rajagopal
,
K. R.
,
Na
,
T. Y.
, and
Gupta
,
A. S.
,
1984
, “
Flow of a Viscoelastic Fluid Over a Stretching Sheet
,”
Rheol. Acta.
,
23
, pp.
213
215
.10.1007/BF01332078
10.
Khan
,
S. K.
,
2006
, “
Boundary Layer Viscoelastic Fluid Flow Over an Exponentially Stretching Sheet
,”
Int. J. Appl. Mech. Eng.
,
2
, pp.
321
335
.
11.
Pakdemirli
,
M.
,
1993
, “
Boundary Layer Flow of Power-Law Fluids Past Arbitrary Profiles
,”
IMA J. Appl. Math.
,
50
, pp.
133
148
.10.1093/imamat/50.2.133
12.
Jalil
,
M.
, and
Asghar
,
S.
,
2012
, “
Flow of Power-Law Fluid Over a Stretching Surface: A Lie Group Analysis
,”
Int. J. Non-Linear Mech.
,
48
, pp.
65
71
.10.1016/j.ijnonlinmec.2012.07.004
13.
Islam
,
S.
,
Shah
,
A.
,
Zhou
,
C. Y.
, and
Ali
,
I.
,
2009
, “
Homotopy Pertubation Analysis of Slider Bearing With Powell–Eyring Fluid
,”
Z. Angew. Math. Phys.
,
60
, pp.
1178
1193
.10.1007/s00033-009-7034-9
14.
Patel
,
M.
, and
Timol
,
M. G.
,
2009
, “
Numerical Treatment of Powell–Eyring Fluid Flow Using Method of Asymptotic Boundary Conditions
,”
Appl. Numer. Math.
,
59
, pp.
2584
2592
.10.1016/j.apnum.2009.04.010
15.
Patel
,
M.
, and
Timol
,
M. G.
,
2011
, “
Numerical Treatment of MHD Powell–Eyring Fluid Flow Using Method of Satisfaction of Asymptotic Boundary Conditions
,”
Int. J. Math. Sci. Comput.
,
2
, pp.
71
78
.
16.
Hayat
,
T.
,
Iqbal
,
Z.
,
Qasim
,
M.
, and
Obaidat
,
S.
,
2012
, “
Steady Flow of an Eyring Powell Fluid Over a Moving Surface With Convective Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
, pp.
1817
1822
.10.1016/j.ijheatmasstransfer.2011.10.046
17.
Pakdemirli
,
M.
,
1994
, “
Similarity Analysis of Boundary Layer Equations of a Class of Non-Newtonian Fluids
,”
Int. J. Non-Linear Mech.
,
29
, pp.
187
196
.10.1016/0020-7462(94)90037-X
18.
Yürüsoy
,
M.
,
Pakdemirli
,
M.
, and
Noyan
,
Ö. F.
,
2001
, “
Lie Group Analysis of Creeping Flow of a Second Grade Fluid
,”
Int. J. Non-Linear Mech.
,
36
, pp.
955
960
.10.1016/S0020-7462(00)00060-3
19.
Jalil
,
M.
,
Asghar
,
S.
, and
Mushtaq
,
M.
,
2010
, “
Lie Group Analysis of Mixed Convection Flow With Mass Transfer Over a Stretching Surface With Suction or Injection
,”
Math. Probl. Eng.
,
2010
, p.
264901
.10.1155/2010/264901
20.
Powell
,
R. E.
, and
Eyring
,
H.
,
1944
, “
Mechanism for Relaxation Theory of Viscosity
,”
Nature
,
154
, pp.
427
428
.10.1038/154427a0
21.
Ibragimov
,
N. H.
, ed.,
1995
,
CRC Handbook of Lie Group Analysis of Differential Equations
, Vol.
2
,
CRC Press
,
Boca Raton, FL
.
22.
Olver
,
P. J.
,
1989
,
Application of Lie Groups to Differential Equations
,
Springer
,
New York
.
23.
Ovsiannikov
,
L. V.
,
1982
,
Group Analysis of Differential Equations
,
Academic
,
New York
.
24.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.