This study attempts to optimize parameters for the microbubble drag reduction in a turbulent flow based on experimental measurements. Five parameters were investigated: three are control factors (the area of air injection, bubble size, and the rate of air injection) and two are indicative factors (flow speed and the measured position of local shear stress). An integrated approach of combining the Taguchi method with artificial neural networks (ANN) is proposed, implementing the optimum parameter design in this study. Based on the experimental results, analysis of variance concluded that, among the control factors, the rate of air injection has the greatest influence on microbubble drag reduction, while bubble size has the least. The investigation of drag reduction characteristics revealed that the drag ratio decreases with an increasing rate of air injection. However, if the rate of air supplied exceeds a certain value, the efficiency of drag reduction can drop. In the case of optimum parameter design, a 21% drag reduction and an S/N ratio of 1.976 dB were obtained.

References

References
1.
McCormick
,
M. E.
, and
Bhattacharyya
,
R.
,
1973
, “
Drag Reduction of a Submersible Hull by Electrolysis
,”
Nav. Eng. J.
,
85
, pp.
11
16
.10.1111/j.1559-3584.1973.tb04788.x
2.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
,
1984
, “
Reduction of Turbulent Skin Friction by Microbubbles
,”
Phys. Fluids
,
27
, pp.
356
363
.10.1063/1.864620
3.
Kitagawa
,
A.
,
Sugiyama
,
K.
,
Ashihara
,
M.
,
Hishida
,
K.
, and
Kodama
,
Y.
,
2003
, “
Measurement of Turbulence Modification by Microbubbles Causing Frictional Drag Reduction
,”
4th ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45648.
4.
Dubnishchev
,
Y. N.
,
Evseev
,
A. R.
,
Sobolev
, V
. S.
, and
Utkin
,
E. N.
,
1975
, “
Study of Gas-Saturated Turbulent Streams Using a Laser Doppler Velocity Meter
,”
J. Appl. Mech. Tech. Phys.
,
16
(
1
), pp.
114
119
.10.1007/BF00853551
5.
Merkle
,
C. L.
, and
Deutsch
,
S.
,
1986
, “
Drag Reduction. Frontiers in Experimental Fluid Mechanics
,”
Lect. Notes Eng.
,
46
, pp.
291
335
.10.1007/978-3-642-83831-6
6.
Kato
,
H.
,
Iwashina
,
T.
,
Miyanaga
,
M.
, and
Yamaguchi
,
H.
,
1999
, “
Effect of Microbubbles on the Structure of Turbulence in a Turbulent Boundary Layer
,”
J. Mar. Sci. Technol.
,
4
, pp.
155
162
.10.1007/PL00010624
7.
Wu
,
S.-J.
,
Hsu
,
C.-H.
, and
Lin
,
T.-T.
,
2007
, “
Model Test of the Surface and Submerged Vehicles With the Micro-bubble Drag Reduction
,”
Ocean Eng.
,
34
, pp.
83
93
.10.1016/j.oceaneng.2005.12.010
8.
Kawamura
,
T.
,
Fujiwara
,
A.
,
Takahashi
,
T.
,
Kato
,
H.
,
Matsumoto
,
Y.
, and
Kodama
,
Y.
,
2004
, “
The Effects of the Bubble Size on the Bubble Dispersion and Skin Friction Reduction
,”
Proceeding of the 5th Symposium on Smart Control of Turbulence
, Tokyo, pp.
145
151
.
9.
Lattorre
,
R
.,
1997
, “
Ship Hull Drag Reduction Using Bottom Air Injection
,”
Ocean Eng.
,
24
, pp.
161
175
.10.1016/0029-8018(96)00005-4
10.
Latorre
,
R.
,
Miller
,
A.
, and
Phillips
,
R.
,
2003
, “
Micro-bubble Resistance Reduction on a Model SES Catamaran
,”
Ocean Eng.
,
30
, pp.
2297
2309
.10.1016/S0029-8018(03)00079-9
11.
Kato
,
H.
, and
Kodama
,
Y.
,
2001
, “
Microbubbles as a Skin Friction Reduction Device—A Midterm Review of the Research
,” 4th Symposium on Smart Control of Turbulence, University of Tokyo, National Maritime Research Institute, Tokyo. Available at http://www.turbulence-control.gr.jp/PDF/symposium/FY2002/Kato.pdf
12.
Wu
,
S.-J.
,
Ouyang
,
K.
, and
Shiah
,
S.-W.
,
2008
, “
Drag Reduction on a Submerged Body by Electrochemistry Generated Micro-Bubbles in Turbulent Boundary Layer Flow
,”
J. Chung Cheng Inst. Tech.
,
36
(
2
), pp.
1
14
(in Chinese). Available at http://jccit.ccit.ndu.edu.tw/ezfiles/7/1007/img/28/6(No.267).pdf
13.
Montogomery
,
D. C.
,
2005
,
Design and Analysis of Experiment
,
6th ed.
,
Wiley
,
New York.
14.
Kim
,
D. K.
,
Choi
,
D. W.
,
Choa
,
Y. H.
, and
Kim
,
H. T.
,
2007
, “
Optimization of Parameters for the Synthesis of Zinc Oxide Nanoparticles by Taguchi Robust Design Method
,”
Colloids Surf., A
,
331
, pp.
170
173
.10.1016/j.colsurfa.2007.06.017
15.
Nikbakht
,
R.
,
Sadrzadeh
,
M.
, and
Mohammadi
,
T.
,
2007
, “
Effect of Operating Parameters on Concentration of Citric Acid Using Electrodialysis
,”
J. Food Eng.
,
83
, pp.
596
604
.10.1016/j.jfoodeng.2007.04.010
16.
Ross
,
P. J.
,
1996
,
Taguchi Techniques for Quality Engineering
,
McGraw-Hill
,
New York
.
17.
Mackay
,
D. J. C.
,
1992
, “
Bayesian Interpolation
,”
Neural Comput.
,
4
, pp.
415
447
.10.1162/neco.1992.4.3.415
18.
Foresee
,
D. F.
, and
Hagan
,
M. T.
,
1997
, “
Gauss-Newton Approximation to Bayesian Learning
,”
International Conference on Neural Network
, Vol.
3
, pp.
1930
1935
.
You do not currently have access to this content.