A uniformly accelerated laminar flow in a pipe, initially at rest, is analyzed. One-dimensional unsteady flow equations for start-up flow were derived from the Navier–Stokes and continuity equations. The dynamical boundary layer in a pipe is described theoretically with the Laplace transformation method for small values of time. A mathematical model describing the development of the velocity profile for accelerating flow starting from rest up to the point of transition to turbulence is given. The theoretical results are compared with experimental findings gained in a large-scale pipeline. Particle image velocimetry (PIV) technique is used to deduce the development of accelerating pipe flow starting from rest. The measured values of the axial velocity component are found to be in a good agreement with the analytical values.

References

References
1.
Ferrante
,
M.
, and
Brunone
,
B.
,
2003
, “
Pipe System Diagnosis and Leak Detection by Unsteady-state Tests. 1. Harmonic Analysis
,”
Adv. Water Resour.
,
26
, pp.
95
105
.10.1016/S0309-1708(02)00101-X
2.
Kapelan
,
Z.
,
Savic
,
D. A.
, and
Walters
,
G. A.
,
2004
, “
Incorporation of Prior Information in Inverse Analysis for Leak Determination and Roughness Calibration
,”
Urban Water
,
1
(
2
), pp.
129
141
.10.1080/15730620412331290029
3.
Brown
,
F. T.
,
1962
, “
The Transient Response of Fluid Lines
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
547
553
.10.1115/1.3658705
4.
D'Souza
,
A. F.
, and
Oldenburger
,
R.
,
1964
, “
Dynamic Response of Fluid Lines
,”
ASME J. Basic Eng.
,
86
(
3
), pp.
586
589
.
5.
Holmboe
,
E. I.
, and
Rouleau
,
W. T.
,
1967
, “
The Effect of Viscous Shear on Transients in Liquid Lines
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
174
180
.10.1115/1.3609549
6.
Zielke
,
W.
,
1968
, “
Frequency Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
7.
Letelier
,
S. M.
, and
Leutheusser
,
H. J.
,
1976
, “
Skin Friction in Unsteady Laminar Pipe Flow
,”
J. Hydr. Div.
,
102
(
1
), pp.
41
56
.
8.
Achard
,
J. L.
, and
Lespirand
,
G. H.
,
1981
, “
Structure of the Transient Wall-Friction Law in One-Dimensional Models of Laminar Pipe Flow
,”
J. Fluid Mech.
,
113
, pp.
263
293
.10.1017/S0022112081003509
9.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipes
,”
J. Hydr. Res.
,
29
(
5
), pp.
669
685
.10.1080/00221689109498983
10.
Shuy
,
E. B.
,
1995
, “
Approximate Wall Shear Equation for Unsteady Laminar Pipe Flows
,”
J. Hydr. Res
,
33
(
4
), pp.
457
469
.10.1080/00221689509498655
11.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
1995
, “
Transient, Turbulent, Smooth Pipe Friction
,”
J. Hydr. Res.
,
33
(
4
), pp.
435
456
.10.1080/00221689509498654
12.
Brereton
,
G. J.
,
2000
, “
The Interdependence of Friction, Pressure Gradient, and Flow Rate in Unsteady Laminar Parallel Flows
,”
Phys. Fluids
,
12
(
3
), pp.
518
530
.10.1063/1.870258
13.
Brereton
,
G. J.
, and
Jiang.
Y.
,
2005
, “
Exact Solutions for Some Fully Developed Laminar Pipe Flows Undergoing Arbitrary Unsteadiness
,”
Phys. Fluids
,
17
, p.
118104
.10.1063/1.1923049
14.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2006
, “
Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation
,”
ASME J. Fluids Eng.
,
128
, pp.
1351
1363
.10.1115/1.2354521
15.
Ghidaoui
,
M. S.
,
2004
, “
On the Fundamental Equations of Water Hammer
,”
Urban Water
,
1
(
4
), pp.
71
83
.10.1080/15730620412331290001
16.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.10.1115/1.1828050
17.
Ainola
,
L.
,
Koppel
,
T.
,
Lamp
,
J.
, and
Liiv
,
U.
,
1981
, “
On the Criteria of the Transition From Laminar to Turbulent in Starting Pipe Flow
,”
Trans. Tallinn Polyt. Inst.
,
505
, pp.
17
29
(in Russian).
18.
Ainola
,
L.
Liiv
,
U.
,
1985
, “
Mathematical Models for Unsteady Flows in Pipes
,”
Trans. Tallinn Polyt. Inst
,
593
, pp.
85
94
(in Russian).
19.
Koppel
,
T.
, and
Ainola
,
L.
,
2006
, “
Identification of Transition to Turbulence in a Highly Accelerated Start-up Pipe Flow
,”
ASME J. Fluids Eng.
,
128
(
4
), pp.
680
686
.10.1115/1.2201640
20.
Ainola
,
L.
,
Koppel
,
T.
,
Lamp
,
J.
, and
Liiv
,
U.
,
1979
, “
An Investigation of Local Velocities in the Pipe at Starting From Rest Unsteady Liquid Flow
,”
Trans. Tallinn Polyt. Inst.
,
472
, pp.
35
45
(in Russian).
21.
Ainola
,
L.
,
Lamp
,
J.
,
Sarv
,
L.
, and
Liiv
,
U.
,
1981
, “
Study of Transition Process of Compressible Fluid in Pipes Using a Numerical Method
,”
Hydrotech. Build
,
1
, pp.
22
25
(in Russian).
22.
Ghidaoui
,
M. S.
, and
Kolyshkin
,
A. A.
,
2001
, “
Stability Analysis of Velocity Profiles in Water-Hammer Flows
,”
J. Hydr. Eng.
,
127
(
6
), pp.
499
512
.10.1061/(ASCE)0733-9429(2001)127:6(499)
23.
Brunone
,
B.
,
Karney
,
B. W.
,
Micarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
J. Water Resour. Plann. Manage.
,
126
(
4
), pp.
236
244
.10.1061/(ASCE)0733-9496(2000)126:4(236)
24.
Das.
D.
, and
Arakeri.
J. H.
,
1998
, “
Transition of Unsteady Velocity Profiles With Reverse Flow
,”
J. Fluid Mech.
,
374
, pp.
251
283
.10.1017/S0022112098002572
25.
Vardy
,
A. E.
,
Bergant
,
A.
,
He
,
S.
,
Ariyaratne
,
C.
,
Koppel
,
T.
,
Annus
,
I.
,
Tijsseling
,
A.
, and
Hou
,
Q.
,
2009
, “
Unsteady Skin Friction Experimentation in a Large Diameter Pipe
,”
3rd IAHR Int. Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
,
P.
Rudolf
, ed.,
Brno
,
Czech Republic
, Vol.
II
, pp.
593
602
.
26.
Annus
,
I.
, and
Koppel
,
T.
,
2011
, “
Transition to Turbulence in Accelerating Pipe Flow
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071202
.10.1115/1.4004365
27.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2011
, “
Wall Shear Stress in Accelerating Turbulent Pipe Flow
,”
J. Fluid Mech.
,
685
, pp.
440
460
.10.1017/jfm.2011.328
28.
Moisy
,
F.
, “PIVMat,” http://www.fast.u-psud.fr/pivmat/
29.
He
,
S.
, and
Ariyaratne
,
C.
,
2011
, “
Wall Shear Stress in the Early Stage of Unsteady Turbulent Pipe Flow
,”
J. Hydraul. Eng.
,
137
(
5
). pp.
606
610
.10.1061/(ASCE)HY.1943-7900.0000336
30.
Ainola
,
L.
,
Lamp
,
J.
,
Liiv
,
U.
, and
Sarv
,
L.
,
1979
, “
A Theoretical Investigation of the Unsteady Liquid Flow in Round Pipes Using a Dissipation Model
,”
Trans. Tallinn Polyt. Inst
,
472
, pp.
25
34
(in Russian).
31.
Kurokawa
,
J.
, and
Morikawa
,
M.
,
1986
, “
Accelerated and Decelerated Flows in Circular pipe (1st Report, Velocity Profiles and Friction Coefficient)
,”
Bull. JSME
,
29
, pp.
758
765
.10.1299/jsme1958.29.758
32.
Viola
,
J. P.
, and
Leutheusser
,
H. J.
,
2004
, “
Experiments on Unsteady Turbulent Pipe Flow
,”
J. Eng. Mech.
,
130
(
2
), pp.
240
244
.10.1061/(ASCE)0733-9399(2004)130:2(240)
33.
British Association for the Advancement of Science
,
1937
,
Mathematical Tables Volume VI. Bessel Functions Part I
,
Cambridge University
,
Cambridge, UK
.
34.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1979
,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
Nauka
,
Moscow
.
You do not currently have access to this content.