Experimental and numerical studies on a high head model Francis turbine were carried out over the entire range of turbine operation. A complete Hill diagram was constructed and pressure-time measurements were performed at several operating conditions over the entire range of power generation by installing pressure sensors in the rotating and stationary domains of the turbine. Unsteady numerical simulations were performed at five operating conditions using two turbulent models, shear stress transport (SST) k-ω and standard k-ε and two advection schemes, high resolution and second order upwind. There was a very small difference (0.85%) between the experimental and numerical hydraulic efficiencies at the best efficiency point (BEP); the maximum difference (14%) between the experimental and numerical efficiencies was found at lower discharge turbine operation. Investigation of both the numerical and experimental pressure-time signals showed that the complex interaction between the rotor and stator caused an output torque oscillation over a particular power generation range. The pressure oscillations that developed due to guide vanes and runner blades interaction propagate up to the trailing edge of the blades. Fourier analysis of the signals revealed the presence of a vortex rope in the draft tube during turbine operation away from the BEP.

References

References
1.
Chirag
,
T.
,
Bhupendra
,
G.
, and
Cervantes
,
M.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraulic Res.
,
51
(
2
), pp.
121
132
.10.1080/00221686.2012.732971
2.
Nicolet
,
C.
,
2007
, “
Hydroacoustic Modelling and Numerical Simulation of Unsteady Operation of Hydroelectric Systems
,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
3.
Antonsen
,
O.
,
2007
, “
Unsteady Flow in Wicket Gate and Runner With Focus on Static and Dynamic Load on Runner
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
4.
Keck
,
H.
, and
Sick
,
M.
,
2008
, “
Thirty Years of Numerical Flow Simulation in Hydraulic Turbomachines
,”
Acta Mech.
,
201
, pp.
211
229
.10.1007/s00707-008-0060-4
5.
Breivik
,
S.
,
2011
, “
CFD-Analysis of a Runner and Draft Tube in a Francis Turbine
,” Master thesis, EPT-M-2011-56, Norwegian University of Science and Technology, Trondheim, Norway.
6.
Staubli
,
T.
,
Senn
,
F.
, and
Sallaberger
,
M.
,
2008
, “
Instability of Pump-Turbines During Start-up in Turbine Mode
,”
The 15th Annual Conference HYDRO 2008
,
Ljubljana, Slovenia
, October 6–8.
7.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbine
,”
ASME J. Fluids Eng.
,
133
, p.
041101
.10.1115/1.4003874
8.
Brekke
,
H.
,
2010
, “
A Review on Oscillatory Problems in Francis Turbine
,”
New Trends in Technologies: Devices
,
Computer, Communication and Industrial Systems
, M. J. Er, ed., Sciyo Janeza Trdine, Rijeka, Croatia, pp.
217
232
.
9.
Pengcheng
,
G.
,
Xingqi
,
L.
,
Weili
,
L.
,
Xiaobo
,
Z.
, and
Peng
,
L.
,
2006
, “
Effect of Blade Geometric Parameters on the Operating Stability of the Hydraulic Turbines
,”
Proc. of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics
,
Elounda, Greece
, August 21–23, pp.
315
318
.
10.
Xiao
,
Y.
,
Wang
,
Z.
, and
Yan
,
Z.
,
2010
, “
Experimental and Numerical Analysis of Blade Channel Vortices in a Francis Turbine Runner
,”
Int. J. Comp. Aid. Eng. Softw.
,
28
(
2
), pp.
154
171
10.1108/02644401111109204.
11.
Fay
,
A.
,
2010
, “
Analysis of Low-Frequency Pulsations in Francis Turbine
,”
Earth Env. Sci.
,
12
, p.
012015
10.1088/1755-1315/12/1/012015.
12.
Arpe
,
J.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2009
, “
Experimental Evidence of Hydroacoustic Pressure Waves in a Francis Turbine Elbow Draft Tube for Low Discharge Conditions
,”
ASME J. Fluids Eng.
,
131
, p.
081102
.10.1115/1.3155944
13.
Ciocan
,
G. D.
,
Iliescu
,
M. S.
,
Vu
,
C. T.
,
Nennemann
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the FLINDT Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
, pp.
146
158
.10.1115/1.2409332
14.
Staubli
,
T.
, and
Meyer
,
D.
,
1999
, “
Draft Tube Calculations
,” Turbine 99, Workshop on Draft Tube Flow, Porjus, Sweden, June 20–23, pp.
1
7
.
15.
Luis
,
C.
,
Eduardo
,
O.
,
Marcelo
,
D.
, and
Antonio
C. P.
,
2003
, “
Assessment of Turbulence Modelling for CFD Simulations into Hydroturbines: Spiral Casing
,”
17th International Mechanicsl Engineering Congress (COBEM 2003)
,
Sao Paulo, Brazil
.
16.
Buntic
,
O. I.
,
Dietze
,
S.
, and
Ruprecht
,
A.
,
2005
, “
Numerical Simulation of the Flow in Turbine-99 Draft Tube
,”
Proc. of the Third IAHR/ERCOFTAC Workshop on Draft Tube Flow
,
Porjus, Sweden
, December 8–9.
17.
Zobeiri
,
A.
,
Kukny
,
J-L.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2006
, “
Pump-Turbine Rotor-Stator Interactions in Generating Mode: Pressure Fluctuation in Distributer Channel
,”
23rd IAHR Symposium
,
Yokohama, Japan
, October.
18.
Zhang
,
L.
, and
Wang
,
W.
,
2007
, “
Intrinsic Features of Turbulent Flow in Strongly 3-D Skew Blade Passage of a Francis Turbine
,”
J Hydrodyn.
,
19
(
1
), pp.
92
99
.10.1016/S1001-6058(07)60033-X
19.
Cervantes
,
M. J.
,
Andersson
,
U.
, and
Lovgren
,
H. M.
,
2010
, “
Turbine-99 Unsteady Simulations-Validations
,”
Earth Env. Sci.
,
12
, p.
012014
10.1088/1755-1315/12/1/012014.
20.
Wu
,
Y.
,
Liu
,
S.
,
Wu
,
X.
,
Dou
,
H.
,
Zhang
,
L.
, and
Tao
,
X.
,
2010
, “
Turbulent Flow Computation Through a Model Francis Turbine and Its Performance Prediction
,”
Earth Env. Sci.
,
12
, p.
012004
10.1088/1755-1315/12/1/012004.
21.
Wu
,
J.
,
Shimmei
,
K.
,
Tani
,
K.
,
Niikura
,
K.
, and
Sato
,
J.
,
2007
, “
CFD Based Design Optimization for Hydro Turbines
,”
ASME J. Fluids Eng.
,
129
, pp.
159
168
.10.1115/1.2409363
22.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
, p.
051101
.10.1115/1.4004088
23.
IEC 60041:
1991–11
, “
Field Acceptance Tests to Determine the Hydraulic Performance of Hydraulic Turbines, Storage Pumps and Pump-Turbines
,” Third Edition, International Electrotechnical Commission, Geneva, Switzerland.
24.
IEC 60193:
1999–11
, “IEC
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests,
” International Electrotechnical Commission, Geneva, Switzerland.
25.
ASME PTC
18-2011
, “
Hydraulic Turbines and Pump-Turbines, Performance Test Codes
,”
ASME
,
New York
.
26.
Ansys User Manual
,
2012
, Ansys CFX Release 12.1 Canonsburg, PA.
27.
Hirsch
,
C.
,
2000
,
Numerical Computation of Internal and External Flows
, Vol.
2
,
John Wiley & Sons
,
London
.
28.
Bergstrom
,
J.
, and
Gebart
,
R.
,
1999
, “
Estimation of Numerical Accuracy for the Flow Field in a Draft Tube
,”
Int. J. Num. Meth. Heat Fluid Flow
,
9
(
4
), pp.
472
486
.10.1108/09615539910266620
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
,
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
, p.
078001
.10.1115/1.2960953
30.
Kobro
,
E.
,
2010
, “
Measurement of Pressure Pulsations in Francis Turbines
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
You do not currently have access to this content.