In this paper we introduce a novel method for calculating 3D flow through the underhood compartement of a vehicle. The method is based on the system of Euler equations, which are numerically solved by a finite volume approach. The total number of finite volumes is very low (<1000 cells). The applied numerics are calibrated to recapture a preceding detailed computational fluid dynamics {CFD) simulation. This calibration is established by two sets of factors. The main advantage of the present approach is that the calibration factors can be inter- and extrapolated between different CFD simulations.

References

References
1.
Kennedy
,
A.
, and
Connor
,
W. J.
,
2007
, “
A Transmission Line Modelling (TLM) Method for Steady-State Convection-Diffusion
,”
Int. J. Numer. Methods Eng.
,
72
, pp.
1009
1028
.10.1002/nme.2049
2.
Jankowski
,
T. A.
,
Schmierer
,
E. N.
,
Prenger
,
F. C.
, and
Ashworth
,
S. P.
,
2008
,
A Series Pressure Drop Representation for Flow Through Orifice Tubes
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051204
.10.1115/1.2907408
3.
Idelchik
,
I. E.
,
2008
,
Handbook of Hydraulic Resistance
,
Jaico
,
Mumbai
.
4.
Arias
,
D. A.
, and
Shedd
,
T. A.
,
2010
, “
CFD Analysis of Compressible Flow Across a Complex Geometry Venturi
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1193
1202
.10.1115/1.2754321
5.
Kumar
,
V.
,
Kapoor
,
S.
,
Arora
,
G.
,
Saha
,
S.
, and
Dutta
,
P.
,
2009
, “
A combined CFD and Flow Network Modeling Approach for Vehicle Underhood Air Flow and Thermal Analysis
,” SAE Technical Paper No. 2009-01-1150.
6.
Yoshikyuki
,
I.
, and
Kyoji
,
K.
,
2008
, “
A Grid-Free Lagrangian Approach of Vortex Method and Particle Trajectory Tracking Method Applied to Internal Fluid-Solid Two-Phase Flows
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011401
.10.1115/1.2813139
7.
Gharakhani
,
A.
,
Sitaraman
,
J.
, and
Stock
,
M. J.
,
2005
, “
A Lagrangian Vortex Method for Simulating Flow Over 3-D Objects
,”
Proceedings of the 2005 ASME Fluids Engineering Division Summer Meeting
,
Houston, TX
, Paper No. FEDSM2005-77024. pp.
1
7
.
8.
Himmel
,
S. R.
,
2009
, “
Modellierung des Strömungsverhaltens in einem HPLWR–Brennelement mit Drahtwendelabstandhaltern
,” Ph.D. Thesis,
Universität Stuttgart, Stuttgart, Germany
.
9.
Class
,
A. G.
,
Viellieber
,
M. O.
, and
Batta
,
A.
,
2011
, “
Coarse-Grid-CFD for Pressure Loss Evaluation in Rod Bundles
,”
Proceedings of the ICAPP
,
France
.
10.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusofz
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
11.
Peller
,
N.
,
Le Duc
,
A.
,
Tremblay
,
F.
, and
Manhart
,
M.
,
2006
, “
High-Order Stable Interpolations for Immersed Boundary Methods
,”
Int. J. Numer. Methods Fluids
,
52
(
11
), pp.
1175
1193
.10.1002/fld.1227
12.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2008
,
Numerische Strömungsmechanik
,
Springer
,
Berlin
.
13.
Patankar
,
S. H.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
Washington, D.C
.
You do not currently have access to this content.