A multistage deep-well centrifugal pump (DCP) with different impeller rear shroud radius have been investigated both numerically and experimentally under multiconditons, which aims at studying the influence of impeller rear shroud radius to the axial force and pump hydraulic performance. During this study, a two-stage DCP equipped with three different impellers was simulated employing the commercial computational fluid dynamics (CFD) software ANYSY-Fluent to solve the Navier-Stokes equations for three-dimensional steady flow. High-quality structured grids were meshed on the whole computational domain. Test results were acquired by prototype experiments, and then compared with the predicted pump performance and axial force. The static pressure distribution in the pump passage obtained by numerical simulation was analyzed. The results indicated that the appropriate impeller rear shroud radius could improve the pump performance and lower the axial force significantly.

References

References
1.
Guelich
,
J. F.
,
2007
,
Centrifugal Pumps
,
Berlin Heidelberg, Springer
,
New York
.
2.
Childs
,
D.
,
1991
, “
Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces For Axial Vibration Analysis
,”
ASME J. Vib. Acoust.
,
113
(
1
), pp.
108
115
.10.1115/1.2930144
3.
Schaefer
,
S.
, and
Olson
,
E.
,
1999
, “
Experimental Evaluation of Axial Thrust in Pumps
,”
World Pumps
,
393
, pp.
34
37
.10.1016/S0262-1762(00)87551-3
4.
Kazakov
,
Y. A.
, and
Pelinskii
,
A. A.
,
1970
, “
Experimental Investigations of the Axial Force in a Submersible, Electric Well Pump
,”
Chem. Petr. Eng.
,
6
, pp.
262
263
.10.1007/BF01144917
5.
Lino
,
T.
,
Sato
,
H.
, and
Miyashiro
,
H.
,
1980
, “
Hydraulic Axial Thrust in Multistage Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
102
, pp.
64
69
.10.1115/1.3240626
6.
Guelich
,
J.
,
Jud
,
W.
, and
Hughes
,
S. F.
,
1987
, “
Review of Parameters Influencing Hydraulic Forces on Centrifugal Impellers
,”
Proc. IMechE, Part A: J. Power and Energy
,
201
, pp.
163
174
.10.1243/PIME_PROC_1987_201_021_02
7.
Baun
,
D. O.
, and
Flack
,
R. D.
,
1999
, “
A Plexiglas Research Pump With Calibrated Magnetic Bearing/Load Cells for Radial and Axial Hydraulic Force Measurements
,”
ASME J. Fluids Eng.
,
121
, pp.
126
132
.10.1115/1.2821992
8.
Baun
,
D. O.
, and
Flack
,
R. D.
,
2003
, “
Effects of Volute Design and Number of Impeller Blades on Lateral Impeller Forces and Hydraulic Performance
,”
Int. J. Rotating Machinery
,
9
(
2
), pp.
145
152
.10.1155/S1023621X03000137
9.
Gantar
,
M.
,
Florjancic
,
D.
, and
Sirok
,
B.
,
2002
, “
Hydraulic Axial Thrust in Multistage Pumps - Origins and Solutions
,”
ASME J. Fluids Eng.
,
124
, pp.
336
341
.10.1115/1.1454110
10.
Zhou
,
L.
,
Shi
,
W.
,
Lu
,
W.
,
Hu
,
B.
, and
Wu
,
S.
,
2012
, “
Numerical Investigations and Performance Experiments of a Deep-Well Centrifugal Pump With Different Diffusers
,”
ASME J. Fluids Eng.
,
134
,
p. 0711002
.10.1115/1.4006676
11.
Shi
,
W.
,
Lu
,
W.
,
Wang
,
H. L.
, and
Li
,
Q. F.
,
2009
, “
Research on the Theory and Design Methods of the New Type Submersible Pump for Deep Well
,”
FEDSM2009
,
1
(Parts A-C), pp.
91
97
.10.1115/FEDSM2009-78099
12.
Tsang
,
L. M.
,
1992
, “
Theoretical Account of Impeller Trimming of the Centrifugal Pump
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
206
(
3
), pp.
213
214
.10.1243/PIME_PROC_1992_206_117_02
13.
Stan
,
S.
,
1999
, “
When Trimming a Centrifugal Pump Impeller Can Save Energy and Increase Flow Rate
,”
World Pumps
,
393
, pp.
37
40
.10.1016/S0262-1762(00)87460-X
14.
Mario
,
S.
,
Hrvoje
,
K.
, and
Igor
,
S.
,
2009
, “
Improving Centrifugal Pump Efficiency by Impeller Trimming
,”
Desalination
,
249
(
2
), pp.
654
659
.10.1016/j.desal.2008.11.018
15.
Singh
,
G.
, and
Mitchell
,
J. W.
,
2009
, “
50th Anniversary Feature-Energy Savings From Pump Impeller Trimming
,”
ASHRAE J.
,
51
(
11
), pp.
34
45
.
16.
Li
,
W. G.
,
2011
, “
Impeller Trimming of an Industrial Centrifugal Viscous Oil Pump
,”
Int. J. Adv. Design Manufactur. Technol.
,
5
(
1
), pp.
1
10
.10.1299/jamdsm.5.1
17.
ISO 9906 Rotodynamic Pumps-Hydraulic Performance Acceptance Tests-Grades 1 and 2, 1999, International Standardization Organization, Geneva.
18.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions For Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.10.2514/1.29373
You do not currently have access to this content.