An analytical study is presented in this paper on hydrodynamic dispersion due to steady electro-osmotic flow (EOF) in a slit microchannel with longitudinal step changes of ζ potential. The channel wall is periodically patterned with alternating stripes of distinct ζ potentials. Existing studies in the literature have considered dispersion in EOF with axial nonuniformity of ζ potential only in the limiting case where the length scale for longitudinal variation is much longer than the cross-sectional dimension of the channel. Hence, the existing theories on EOF dispersion subject to nonuniform charge distributions are all based on the lubrication approximation, by which cross-sectional mixing is ignored. In the present study, the general case where the length of one periodic unit of wall pattern (which involves a step change of ζ potential) is comparable with the channel height, as well as the long-wave limiting case, are investigated. The problem for the hydrodynamic dispersion coefficient is solved numerically in the general case, and analytically in the long-wave lubrication limit. The dispersion coefficient and the plate height are found to have strong, or even nonmonotonic, dependence on the controlling parameters, including the period length of the wall pattern, the area fraction of the EOF-suppressing region, the Debye parameter, the Péclet number, and the ratio of the two ζ potentials.

References

1.
Martin
,
M.
, and
Guiochon
,
G.
,
1984
, “
Axial Dispersion in Open-Tubular Capillary Liquid Chromatography With Electroosmotic Flow
,”
Anal. Chem.
,
56
, pp.
614
620
.10.1021/ac00268a006
2.
Datta
,
R.
, and
Kotamarthi
,
V. R.
,
1990
, “
Electrokinetic Dispersion in Capillary Electrophoresis
,”
AIChE J.
,
36
, pp.
916
926
.10.1002/aic.690360613
3.
Griffiths
,
S. K.
, and
Nilson
,
R. H.
,
1999
, “
Hydrodynamic Dispersion of a Neutral Nonreacting Solute in Electroosmotic Flow
,”
Anal. Chem.
,
71
, pp.
5522
5529
.10.1021/ac990714w
4.
Griffiths
,
S. K.
, and
Nilson
,
R. H.
,
2000
, “
Electroosmotic Fluid Motion and Late-Time Solute Transport for Large Zeta Potentials
,”
Anal. Chem.
,
72
, pp.
4767
4777
.10.1021/ac000539f
5.
Zholkovskij
,
E. K.
,
Masliyah
,
J. H.
, and
Czarnecki
,
J.
,
2003
, “
Electroosmotic Dispersion in Microchannels With a Thin Double Layer
,”
Anal. Chem.
,
75
, pp.
901
909
.10.1021/ac0203591
6.
Zholkovskij
,
E. K.
, and
Masliyah
,
J. H.
,
2004
, “
Hydrodynamic Dispersion Due to Combined Pressure-Driven and Electroosmotic Flow Through Microchannels With a Thin Double Layer
,”
Anal. Chem.
,
76
, pp.
2708
2718
.10.1021/ac0303160
7.
Paul
,
S.
, and
Ng
,
C. O.
,
2012
, “
Dispersion in Electroosmotic Flow Generated by Oscillatory Electric Field Interacting With Oscillatory Wall Potentials
,”
Microfluid Nanofluid
,
12
, pp.
237
256
.10.1007/s10404-011-0868-4
8.
Paul
,
S.
, and
Ng
,
C. O.
,
2012
, “
On the Time Development of Dispersion in Electroosmotic Flow Through a Rectangular Channel
,”
Acta Mech. Sin.
,
28
, pp.
631
643
.10.1007/s10409-012-0113-8
9.
Potoîcek
,
B.
,
Gaîs
,
B.
,
Kenndler
,
E.
, and
Stîedrý
,
M.
,
1995
, “
Electroosmosis in Capillary Zone Electrophoresis With Non-Uniform Zeta Potential
,”
J. Chromatogr. A
,
709
, pp.
51
62
.10.1016/0021-9673(95)00109-Z
10.
Long
,
D.
,
Stone
,
H. A.
, and
Ajdari
,
A.
,
1999
, “
Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis
,”
J. Colloid Interfaces Sci.
,
212
, pp.
338
349
.10.1006/jcis.1998.6015
11.
Herr
,
A. E.
,
Molho
,
J. I.
,
Santiago
,
J. G.
,
Mungal
,
M. G.
, and
Kenny
,
T. W.
,
2000
, “
Electroosmotic Capillary Flow With Nonuniform Zeta Potential
,”
Anal. Chem.
,
72
, pp.
1053
1057
.10.1021/ac990489i
12.
Ghosal
,
S.
,
2002
, “
Band Broadening in a Microcapillary With a Stepwise Change in the ζ-Potential
,”
Anal. Chem.
,
74
, pp.
4198
4203
.10.1021/ac025630t
13.
Ghosal
,
S.
,
2002
, “
Lubrication Theory for Electro-Osmotic Flow in a Microfluidic Channel of Slowly Varying Cross-Section and Wall Charge
,”
J. Fluid Mech.
,
459
, pp.
103
128
.10.1017/S0022112002007899
14.
Ghosal
,
S.
,
2003
, “
The Effect of Wall Interactions in Capillary-Zone Electrophoresis
,”
J. Fluid Mech.
,
491
, pp.
285
300
.10.1017/S0022112003005330
15.
Zholkovskij
,
E. K.
,
Yaroshchuk
,
A. E.
,
Masliyah
,
J. H.
, and
Ribas
,
J. P.
,
2010
, “
Broadening of Neutral Solute Band in Electroosmotic Flow Through Submicron Channel With Longitudinal Non-Uniformity of Zeta Potential
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
354
, pp.
338
346
.10.1016/j.colsurfa.2009.09.043
16.
Ng
,
C. O.
, and
Zhou
,
Q.
,
2012
, “
Dispersion Due to Electroosmotic Flow in a Circular Microchannel With Slowly Varying Wall Potential and Hydrodynamic Slippage
,”
Phys. Fluids
,
24
, p.
112002
.10.1063/1.4766598
17.
Ghosal
,
S.
,
2006
, “
Electrokinetic Flow and Dispersion in Capillary Electrophoresis
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
309
338
.10.1146/annurev.fluid.38.050304.092053
18.
Ajdari
,
A.
,
1996
, “
Generation of Transverse Fluid Currents and Forces by an Electric Field: Electro-Osmosis on Charge-Modulated and Undulated Surfaces
,”
Phys. Rev. E
,
53
, pp.
4996
5005
.10.1103/PhysRevE.53.4996
19.
Ng
,
C. O.
, and
Chu
,
H. C. W.
,
2011
, “
Electrokinetic Flows Through a Parallel-Plate Channel With Slipping Stripes on Walls
,”
Phys. Fluids
,
23
, p.
102002
.10.1063/1.3647582
20.
Anderson
,
J. L.
, and
Idol
,
W. K.
,
1985
, “
Electroosmosis Through Pores With Nonuniformly Charged Walls
,”
Chem. Eng. Commum.
,
38
, pp.
93
106
.10.1080/00986448508911300
21.
Datta
,
S.
, and
Ghosal
,
S.
,
2009
, “
Characterizing Dispersion in Microfluidic Channels
,”
Lab Chip
,
9
, pp.
2537
2550
.10.1039/b822948c
22.
Mei
,
C. C.
,
Auriault
,
J. L.
, and
Ng
,
C. O.
,
1996
, “
Some Applications of the Homogenization Theory
,”
Adv. Appl. Mech.
,
32
, pp.
277
348
.10.1016/S0065-2156(08)70078-4
23.
Mei
,
C. C.
,
1992
, “
Method of Homogenization Applied to Dispersion in Porous Media
,”
Transp. Porous Media
,
9
, pp.
261
274
.10.1007/BF00611970
24.
Ng
,
C. O.
, and
Rudraiah
,
N.
,
2008
, “
Convective Diffusion in Steady Flow Through a Tube With a Retentive and Absorptive Wall
,”
Phys. Fluids
,
20
, p.
073604
.10.1063/1.2958322
25.
Stroock
,
A. D.
, and
Whitesides
,
G. M.
,
2003
, “
Controlling Flows in Microchannels With Patterned Surface Charge and Topography
,”
Acc. Chem. Res.
,
36
, pp.
597
604
.10.1021/ar0202870
26.
Zhao
,
H.
, and
Bau
,
H. H.
,
2007
, “
Effect of Secondary Flows on Taylor–Aris Dispersion
,”
Anal. Chem.
,
79
, pp.
7792
7798
.10.1021/ac701681b
You do not currently have access to this content.