Various vehicles have been designed as short blunt bodies. Drag coefficients of these bodies are high because adverse pressure gradients cause boundary layer separation from their surfaces, but a reduction of the size of separation zone allows for a substantial reduction of the body drag. It can be done via displacement of their boundary layer separation far downstream. In this study, such displacement was achieved with a combination of passive and active flow control. First, the whole body side surface includes two constant pressure surfaces of selected lengths and the surface of a high adverse pressure gradient in the middle of them. Second, the boundary layer suction maintained on this middle surface prevents separation there. The concept feasibility is manifested for very short axisymmetric bodies (of length to width ratios from 1.02 till 1.25). For moderate Reynolds numbers (from 3,000,000 to 10,000,000) and at the optimum suction intensity, the total drag coefficient of the designed bodies is about tenfold lower than the drag of spheroids of the same slenderness. The 3D design problem is also considered.

References

References
1.
Choi
,
K. S.
,
Yang
,
X.
,
Clayton
,
B. R.
,
Glover
,
E. J.
,
Atlar
,
M.
,
Semenov
,
B. N.
, and
Kulik
,
V. M.
,
1997
, “
Turbulent Drag Reduction Using Compliant Surfaces
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
2229
2240
.10.1098/rspa.1997.0119
2.
Modi
,
V. J.
,
1997
, “
Moving Surface Boundary-Layer Control: A Review
,”
J. Fluids Struct.
,
11
, pp.
627
663
.10.1006/jfls.1997.0098
3.
Beaudoina
,
J.-F.
,
Cadot
,
O.
,
Aider
,
J.-L.
, and
Wesfreid
,
J.-E.
,
2006
, “
Drag Reduction of a Bluff Body Using Adaptive Control Methods
,”
Phys. Fluids
,
18
, p.
085107
.10.1063/1.2236305
4.
Khalighi
,
B.
,
Chen
,
K.-H.
, and
Iccarino
,
G.
,
2012
, “
Unsteady Aerodynamic Flow Investigation Around a Simplified Square-Back Road Vehicle With Drag Reduction Devices
,”
ASME J. Fluids Eng.
,
134
, p.
061101
.10.1115/1.4006643
5.
Hoerner
,
S. F.
,
1965
,
Fluid Dynamic Drag
,
Hoerner Fluid Dynamics
,
Bricktown, NJ
.
6.
Morkovin
,
M. V.
,
1964
, “
Flow Around Cylinder—A Kaleidoscope of Challenging Fluid Phenomena
,”
Proceedings of ASME Symposium on Fully Separated Flows
, pp.
102
118
.
7.
Bourgoyne
,
D. A.
,
Ceccio
,
S. L.
, and
Dowling
,
D. R.
,
2005
, “
Vortex Shedding From a Hydrofoil at High Reynolds Number
,”
J. Fluid Mech.
,
531
, pp.
293
324
.10.1017/S0022112005004076
8.
Aksent'ev
,
L. A.
,
Il'insky
,
N. B.
,
Nuzhin
,
M. T.
,
Salimov
,
R. B.
, and
Tumashev
,
G. G.
,
1982
, “
The Theory of Inverse Boundary Value Problems for Analytical Functions and Its Applications
,”
J. Math. Sci.
,
18
, pp.
479
515
.10.1007/BF01084867
9.
Birkhoff
,
G.
, and
Zarantonello
,
E.
,
1957
,
Jets, Wakes, and Cavities
,
Academic
,
New York
.
10.
Amromin
,
E. L.
,
Kopriva
,
J.
, and
Arndt
,
R. E. A.
,
2006
, “
Hydrofoil Drag Reduction by Partial Cavitation
,”
ASME J. Fluids Eng.
,
128
, pp.
931
936
.10.1115/1.2234787
11.
Hasvold
,
O.
,
Lian
,
T.
,
Haakaas
,
E.
,
Størkersen
,
N.
,
Perelman
,
O.
, and
Cordier
,
S.
,
2004
, “
CLIPPER: A Long-Range, Autonomous Underwater Vehicle Using Magnesium Fuel and Oxygen From the Sea
,”
J. Power Sources
,
136
, pp.
232
239
.10.1016/j.jpowsour.2004.03.023
12.
Varghese
,
A. N.
,
Uhlman
,
J. S.
, and
Kirschner
,
I. N.
,
2005
, “
Numerical Analysis of High-Speed Bodies in Partially Cavitating Axisymmetric Flow
,”
ASME J. Fluids Eng.
,
127
, pp.
41
54
.10.1115/1.1852473
13.
Amromin
,
E. L.
,
2002
, “
Scale Effect of Cavitation Inception on a 2D Eppler Hydrofoil
,”
ASME J. Fluids Eng.
,
124
, pp.
186
193
.10.1115/1.1427689
14.
Black
,
T. J.
, and
Sarencki
,
A. J.
,
1958
, “
The Turbulent Boundary Layer With Suction or Injection
,” Aeronautic Research Council Reports and Memo No. 3387.
15.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Head Transfer
,
Springer-Verlag
,
Berlin
.
16.
Arndt
,
R. E. A.
,
Hambleton
,
W.
, and
Amromin
,
E. L.
,
2009
, “
Cavitation Inception in the Wake of a Jet-Driven Body
,”
ASME J. Fluids Eng.
,
131
, p.
111302
.10.1115/1.4000388
17.
Patel
,
V. C.
,
Nakayama
,
A.
, and
Damian
,
R.
,
1974
, “
Measurement in the Thick Axisymmetric Boundary Layer Near the Tail of a Body of Revolution
,”
J. Fluid Mech.
,
63
, pp.
345
367
.10.1017/S0022112074001170
18.
Amromin
,
E. L.
, and
Bushkovskii
,
V. A.
,
1997
, “
Variation Approach to Three-Dimensional Inverse Problems of Potential Theory
,”
Tech. Phys.
,
42
, pp.
1121
1127
.10.1134/1.1258786
19.
Oyewola
,
O.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
,
2005
, “
Influence of Localized Double Suction on the Turbulent Boundary Layer
,”
J. Fluids Struct.
,
23
, pp.
787
798
.10.1016/j.jfluidstructs.2006.11.006
20.
Hess
,
J. L.
, and
Smith
,
A. M. O.
,
1967
, “
Calculation of Potential Flow About Arbitrary Bodies
,”
Prog. Aeronaut. Sci.
,
8
, pp.
1
138
.10.1016/0376-0421(67)90003-6
21.
Amromin
,
E. L.
,
2007
, “
Design of Bodies With Drag Reduction by Partial Cavitation as an Inverse Ill-Posed Problem for Velocity Potential
,”
9th International Conference on Numerical Ship Hydrodynamics
,
Ann Arbor, MI
.
22.
Sedney
,
R.
,
1957
, “
Laminar Boundary Layer on a Spinning Cone at Small Angles of Attack in a Supersonic Flow
,”
J. Aeronaut. Sci.
,
24
, pp.
430
456
.10.2514/8.3873
You do not currently have access to this content.