A method for mapping the separation and transition of flow over a slowly pitching airfoil with high angular resolution is presented. An array of surface-mounted hot-film sensors is used to record simultaneous corresponding voltages. The method makes use of windowed correlation and spectral signatures of hot-film sensor voltages in synchronization with a servo-motor controlling airfoil pitch angle. Results are given for a NACA-0012 airfoil at three airspeeds at pitch angles of less than 6 deg. The airspeeds correspond to a region of known aeroelastic instability; they are situated between chord Reynolds numbers of 50,000 and 130,000. Tests in static and quasi-static pitch motion schedules were conducted. The quasi-static airfoil was sinusoidally pitching at 0.025 Hz between −6 deg and +6 deg (corresponding to a half-chord based reduced frequency between 0.0011 and 0.0020) and the detected separation and transition agreed very well with the static case. These results constitute a verification of the method used and provide insight into the size and location of the laminar separation bubble at transitional Reynolds numbers.

References

1.
Mueller
,
T.
,
1985
, “
Low Reynolds Number Vehicles
,” Technical Report No. AGARD-AG 288.
2.
Gad-el Hak
,
M.
,
1990
, “
Control of Low Airfoil Aerodynamics
,”
AIAA J.
,
28
(
9
), pp.
1537
1552
.10.2514/3.25250
3.
McMaster
,
J.
, and
Henderson
,
M. L.
,
1980
, “
Low Speed Single Element Airfoil Synthesis
,” Technical Soaring,
6
(
2
), pp.
1
22
.
4.
Poirel
,
D.
,
Harris
,
Y.
, and
Benaissa
,
A.
,
2008
, “
Self-Sustained Aeroelastic Oscillations of a NACA 0012 Airfoil at Low-to-Moderate Reynolds Numbers
,”
J. Fluids Struct.
,
24
(
5
), pp.
700
719
.10.1016/j.jfluidstructs.2007.11.005
5.
Poirel
,
D.
, and
Yuan
,
W.
,
2010
, “
Aerodynamics of Laminar Separation Flutter at a Transitional Reynolds Number
,”
J. Fluids Struct.
,
26
, pp.
1174
1194
.10.1016/j.jfluidstructs.2010.06.005
6.
Yuan
,
W.
,
Poirel
,
D.
,
Wang
,
B.
, and
Khalid
,
M.
,
2012
, “
Simulations of Airfoil Limit-Cycle Oscillations at Transitional Reynolds Numbers
,”
Proceedings of the 50th AIAA Aerospace Sciences Conference
, AIAA Paper No. 2012-0041.
7.
Poirel
,
D.
,
Metivier
,
V.
, and
Dumas
,
G.
,
2011
, “
Computational Aeroelastic Simulations of Self-Sustained Pitch Oscillations of a NACA0012 at Transitional Reynolds Numbers
,”
J. Fluids Struct.
,
27
(
8
), pp.
1262
1277
.10.1016/j.jfluidstructs.2011.05.009
8.
Yen
,
S.
, and
Fei
,
Y. F.
,
2011
, “
Winglet Dihedral Effect on Flow Behavior and Aerodynamic Performance of NACA0012 Wings
,”
ASME J. Fluids Eng.
,
133
, pp.
1
9
.10.1115/1.4004420
9.
McCroskey
,
W.
,
1977
, “
Some Current Research in Unsteady Fluid Dynamics
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
8
39
.10.1115/1.3448570
10.
Rudmin
,
D.
,
Benaissa
,
A.
, and
Poirel
,
D.
,
2010
, “
Study of Near Wake Flow Structure of a Pitching Airfoil
,”
Proceedings of the CSME Forum
.
11.
Chew
,
Y.
,
Khoo
,
B.
,
Lim
,
C.
, and
Teo
,
C.
,
1998
, “
Dynamic Response of a Hot-Wire Anemometer. Part II: A Flush-Mounted Hot-Wire and Hot-Film Probes for Wall Shear Stress Measurements
,”
Meas. Sci. Technol.
,
9
, p.
764
.10.1088/0957-0233/9/5/006
12.
Stack
,
J.
,
Mangalam
,
S.
, and
Berry
,
S.
,
1987
, “
A Unique Measurement Technique to Study Laminar-Separation Bubble Characteristics on an Airfoil
,”
Proceedings of the 19th AIAA Fluid Dynamics, Plasma Dynamics, and Lasers Conference
,
Honolulu, HI
, p.
1271
.
13.
Lee
,
T.
, and
Basu
,
S.
,
1998
, “
Measurement of Unsteady Boundary Layer Developed on an Oscillating Airfoil Using Multiple Hot-Film Sensors
,”
Exp. Fluids
,
25
(
2
), pp.
108
117
.10.1007/s003480050214
14.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
(
1
), pp.
313
341
.10.1017/S0022112004009851
15.
Mangalam
,
A.
, and
Moes
,
T.
,
2004
, “
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
,” Report No. NASA/TM 2004-212854.
16.
Lorber
,
P.
,
1992
, “
An Oscillating Three-Dimensional Wing Experiment: Compressibility, Sweep, Rate, Waveform, and Geometry Effects on Unsteady Separation and Dynamic Stall
,” Technical Report, DTIC Document No. UTRC R92-958325-6.
17.
Desgeorges
,
O.
,
Lee
,
T.
, and
Kafyeke
,
F.
,
2002
, “
Multiple Hot-Film Sensor Array Calibration and Skin Friction Measurement
,”
Exp. Fluids
,
32
(
1
), pp.
37
43
.10.1007/s003480200004
18.
Kunkel
,
G.
, and
Marusic
,
I.
,
2003
, “
An Approximate Amplitude Attenuation Correction for Hot-Film Shear Stress Sensors
,”
Exp. Fluids
,
34
(
2
), pp.
285
290
.10.1007/s00348-002-0558-9
19.
Alfredsson
,
P.
,
Johansson
,
A.
,
Haritonidis
,
J.
, and
Eckelmann
,
H.
,
1988
, “
The Fluctuating Wall-Shear Stress and the Velocity Field in the Viscous Sublayer
,”
Phys. Fluids
,
31
,
p
. 1026.10.1063/1.866783
20.
Kolmogorov
,
A.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc.: R. Soc. Edinburgh, Sect. A: Math. Phys. Sci.
,
434
(
1890
), pp.
9
13
.10.1098/rspa.1991.0075
21.
Burgmann
,
S.
,
Brücker
,
C.
, and
Schröder
,
W.
,
2006
, “
Scanning PIV Measurements of a Laminar Separation Bubble
,”
Exp. Fluids
,
41
(
2
), pp.
319
326
.10.1007/s00348-006-0153-6
22.
Huang
,
R.
,
Shy
,
W.
,
Lin
,
S.
, and
Hsiao
,
F.
,
1996
, “
Influence of Surface Flow on Aerodynamic Loads of a Cantilever Wing
,”
AIAA J.
,
34
(
3
), pp.
527
532
.10.2514/3.13100
23.
Shan
,
H.
,
Jiang
,
L.
, and
Liu
,
C.
,
2005
, “
Direct Numerical Simulation of Flow Separation Around a NACA 0012 Airfoil
,”
Comput. Fluids
,
34
(
9
), pp.
1096
1114
.10.1016/j.compfluid.2004.09.003
You do not currently have access to this content.