An original approach based on energy balance between vapor bubble collapse, emitted pressure wave, and neighboring solid wall response was proposed, developed, and tested to estimate the aggressiveness of cavitating flows. In the first part of the work, to improve a prediction method for cavitation erosion (Fortes-Patella and Reboud, 1998, “A New Approach to Evaluate the Cavitation Erosion Power,” ASME J. Fluids Eng., 120(2), pp. 335–344; Fortes-Patella and Reboud, 1998, “Energetical Approach and Impact Efficiency in Cavitation Erosion,” Proceedings of Third International Symposium on Cavitation, Grenoble, France), we were interested in studying the pressure waves emitted during bubble collapse. The radial dynamics of a spherical vapor/gas bubble in a compressible and viscous liquid was studied by means of Keller's and Fujikawa and Akamatsu's physical models (Prosperetti, 1994, “Bubbles Dynamics: Some Things we did not Know 10 Years Ago,” Bubble Dynamics and Interface Phenomena, Blake, Boulton-Stone, Thomas, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 3–15; Fujikawa and Akamatsu, 1980, “Effects of Non-Equilibrium Condensation of Vapor on the Pressure Wave Produced by Collapse of a Bubble in Liquid,” J. Fluid Mech., 97(3), pp. 481–512). The pressure amplitude, the profile, and the energy of the pressure waves emitted during cavity collapses were evaluated by numerical simulations. The model was validated by comparisons with experiments carried out at Laboratoire Laser, Plasma et Procédés Photoniques (LP3-IRPHE) (Marseille, France) with laser-induced bubble (Isselin et al., 1998, “Investigations of Material Damages Induced by an Isolated Vapor Bubble Created by Pulsed Laser,” Proceedings of Third International Symposium on Cavitation, Grenoble, France; Isselin et al., 1998, “On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena,” J. Appl. Phys., 84(10), pp. 5766–5771). The efficiency of the first collapse ηwave/bubble (defined as the ratio between pressure wave energy and initial bubble potential energy) was evaluated for different bubble collapses. For the cases considered of collapse in a constant-pressure field, the study pointed out the strong influence of the air contents on the bubble dynamics, on the emitted pressure wave characteristics, and on the collapse efficiency. In the second part of the study, the dynamic response and the surface deformation (i.e., pit profile and pit volume) of various materials exposed to pressure wave impacts was simulated making use of a 2D axisymmetric numerical code simulating the interaction between pressure wave and an elastoplastic solid. Making use of numerical results, a new parameter β (defined as the ratio between the pressure wave energy and the generated pit volume) was introduced and evaluated for three materials (aluminum, copper, and stainless steel). By associating numerical simulations and experimental results concerning pitted samples exposed to cavitating flows (volume damage rate), the pressure wave power density and the flow aggressiveness potential power were introduced. These physical properties of the flow characterize the cavitation intensity and can be related to the flow hydrodynamic conditions. Associated to β and ηwave/bubble parameters, these power densities appeared to be useful tools to predict the cavitation erosion power.

References

References
1.
Kato
,
H.
,
Konno
,
A.
,
Maeda
,
M.
, and
Yamaguchi
,
H.
,
1996
, “
Possibility of Quantitative Prediction of Cavitation Erosion Without Model Test
,”
ASME J. Fluids Eng.
,
118
(3)
, pp.
582
588
.10.1115/1.2817798
2.
Pereira
,
F.
,
Avellan
,
F.
, and
Dupont
,
P.
,
1998
, “
Prediction of Cavitation Erosion: An Energy Approach
,”
ASME J. Fluids Eng.
,
120
(4), pp.
719
727
.10.1115/1.2820729
3.
Hattori
,
S.
,
Hirose
,
T.
, and
Sugiyama
,
K.
,
2010
, “
Prediction Method for Cavitation Erosion Based on Measurement of Bubble Collapse Impact Loads
,”
Wear
,
269
, pp.
507
514
.10.1016/j.wear.2010.05.015
4.
Franc
,
J. P.
,
2009
, “
Incubation Time and Cavitation Erosion Rate of Work-Hardening Materials
,”
ASME J. Fluids Eng
,
131
(2), p.
021303
.10.1115/1.3063646
5.
Dular
,
M.
,
Stofel
,
B.
, and
Sirok
,
B.
,
2006
, “
Development of a Cavitation Erosion Model
,”
Wear
,
261
, pp.
642
655
.10.1016/j.wear.2006.01.020
6.
Steller
,
J.
, and
Krella
,
A.
,
2007
, “
On Fractional Approach to Assessment of Material Resistance to Cavitation
,”
Wear
,
263
, pp.
402
411
.10.1016/j.wear.2007.01.064
7.
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
1998
, “
A New Approach to Evaluate the Cavitation Erosion Power
,”
ASME J. Fluids Eng.
,
120
(2), pp.
335
344
.10.1115/1.2820653
8.
Fortes-Patella
,
R.
,
Challier
,
G.
, and
Reboud
,
J. L.
,
1999
, “
Study of Pressure Wave Emitted During Spherical Bubble Collapse
,”
Proceedings of ASME
, Paper No. FEDSM99-6756.
9.
Fortes-Patella
,
R.
,
Challier
,
G.
,
Reboud
,
J. L.
, and
Archer
,
A.
,
2001
, “
Cavitation Erosion Mechanism: Numerical Simulations of the Interaction Between Pressure Waves and Solid Boundaries
,”
Proceedings of CAV 2001 Symposium
, June 2001,
Pasadena, CA
.
10.
Lord Rayleigh
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
,
34
(
200
), pp.
94
98
.10.1080/14786440808635681
11.
Prosperetti
,
A.
,
1994
, “
Bubbles Dynamics: Some Things we did not Know 10 Years Ago
,”
Bubble Dynamics and Interface Phenomena
,
J.
Blake
,
J.
Boulton-Stone
, and
N.
Thomas
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
3
15
.
12.
Fujikawa
,
S.
, and
Akamatsu
,
T.
,
1980
, “
Effects of Non-Equilibrium Condensation of Vapor on the Pressure Wave Produced by Collapse of a Bubble in Liquid
,”
J. Fluid Mech.
,
97
(
3
), pp.
481
512
.10.1017/S0022112080002662
13.
Plesset
,
M.
, and
Chapmann
,
R.
,
1971
, “
Collapse of an Initially Spherical Vapor Cavity in the Neighborhood of a Solid Boundary
,”
J. Fluid Mech.
,
47
(
2
), pp.
283
290
.10.1017/S0022112071001058
14.
Vogel
,
A.
,
Lauterborn
,
W.
, and
Timm
,
R.
,
1989
, “
Optical and Acoustic Investigations of the Dynamics of Laser-Produced Cavitation Bubbles Near a Solid Boundary
,”
J. Fluid Mech.
,
206
, pp.
299
338
.10.1017/S0022112089002314
15.
Matsumoto
,
Y.
,
1998
, “
Bubble Dynamics in Cavitation
,”
Proceedings of the 3rd International Symposium on Cavitation
,
Grenoble, France
.
16.
Brujan
,
E. A.
,
Keen
,
G. S.
,
Vogel
,
A.
, and
Blake
,
J. R.
,
2002
, “
The Final Stage of the Collapse of a Cavitation Bubble Close to a Rigid Boundary
,”
Phys. Fluids
,
14
(
1
), pp.
85
92
.10.1063/1.1421102
17.
Lindau
,
O.
, and
Lauterborn
,
W.
,
2003
, “
Cinematographic Observation of the Collapse and Rebound of a Laser-Produced Cavitation Bubble Near a Wall
,”
J. Fluid Mech.
,
479
, pp.
327
348
.10.1017/S0022112002003695
18.
Kroninger
,
D.
,
Kohler
,
K.
,
Kurz
,
T.
, and
Lauterborn
,
W.
,
2010
, “
Particle Tracking Velocimetry of the Flow Field Around a Collapsing Cavitation Bubble
,”
Exp. Fluids
,
48
, pp.
395
408
.10.1007/s00348-009-0743-1
19.
Ward
,
B.
, and
Emmony
,
D. C.
,
1990
, “
The Energies and Pressures of Acoustics Transients Associated With Optical Cavitation in Water
,”
J. Mod. Opt.
,
37
(
4
), pp.
803
811
.10.1080/09500349014550861
20.
van der Meulen
,
J. H. J.
, and
van Renesse
,
R. L.
,
1993
, “
The Collapse of Laser-Induced Bubbles Near a Solid Boundary and the Generation of Pressure Pulses
,”
Cavitation and Multiphase Flow Forum (FED Series), Vol. 153
,
O.
Furuya
, ed.,
ASME
,
Washington, DC
, pp.
127
132
.
21.
Bourne
,
N. K.
,
2002
, “
On the Collapse of Cavities
,”
Shock Waves
,
11
, pp.
447
455
.10.1007/s001930200128
22.
Philipp
,
A.
,
Ohl
,
C. D.
, and
Lauterborn
,
W.
,
1995
, “
Single Bubble Erosion on a Solid Surface
,”
Proceedings of the International Symposium on Cavitation
(CAV1995), Deauville,
France
, pp.
297
303
.
23.
Chen
,
X.
,
Xu
,
R. Q.
,
Shen
,
Z. H.
,
Lu
,
J.
, and
Ni
,
X. W.
,
2004
, “
Optical Investigation of Cavitation Erosion by Laser-Induced Bubble Collapse
,”
Opt. Laser Technol.
,
36
, pp.
197
203
.10.1016/j.optlastec.2003.08.004
24.
Tomita
,
Y.
, and
Shima
,
A.
,
1986
, “
Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse
,”
J. Fluid Mech.
,
169
, pp.
535
564
.10.1017/S0022112086000745
25.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1987
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(4), pp.
788
794
.10.1115/1.2819499
26.
Buravova
,
S. N.
, and
Gordopolov
,
Y. A.
,
2010
, “
Bubble Induced Cavitation Effect Upon Solid Surfaces
,”
Tech. Phys. Lett.
,
36
(
8
), pp.
717
719
.10.1134/S1063785010080110
27.
Prosperetti
,
A.
, and
Lezzi
,
A.
,
1986
, “
Bubble Dynamics in a Compressible Liquid. Part I: First Order Theory
,”
J. Fluid Mech.
,
168
, pp.
457
478
.10.1017/S0022112086000460
28.
Herring
,
C.
,
1941
, “
Theory of the Pulsations of the Gas Bubble Produced by an Underwater Explosion
,” OSRD Report No. 236.
29.
Beeching
,
R.
,
1942
, “
Resistance to Cavitation Erosion
,”
Trans. Inst. Eng. Shipbuild. Scotl.
,
85
, pp.
210
276
.
30.
Poritski
,
M.
,
1952
, “
The Collapse or the Growth of a Spherical Bubble or Cavity in a Viscous Fluid
,”
Proceedings of the 1st U.S. National Congress of Applied Mechanics (ASME)
, pp.
813
821
.
31.
Keller
,
J. B.
, and
Kolodner
,
I. I.
,
1956
, “
Damping of Underwater Explosion Bubble Oscillation
,”
J. Appl. Phys.
,
27
(
10
), pp.
1152
1161
.10.1063/1.1722221
32.
Gilmore
,
F. R.
,
1952
, “
The Collapse and Growth of a Spherical Bubble in a Viscous Compressible Liquid
,” California Institute of Technology Hydrodynamics Laboratory, Report No. 26-4.
33.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Dover Publications
,
New York
.
34.
Lindau
, O.,
2001
, “
Untersuchungen zur laserzeugten Kavitation
,” Ph.D. thesis, Georg-August-Universität, Göttingen, Germany.
35.
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
1998
, “
Energetical Approach and Impact Efficiency in Cavitation Erosion
,”
Proceedings of 3rd International Symposium on Cavitation
,
Grenoble, France
.
36.
Lovik
,
A.
, and
Vassenden
,
J.
,
1977
, “
Basic and Applied Aspects of Scaling Cavitation Noise
,”
Proceedings of the Conference on Scaling for Performance Prediction in Rotordynamic Machines
,
University of Stirling
,
Stirling, UK
.
37.
Knapp
,
R. T.
,
Daily
,
J. T.
, and
Hammit
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
38.
Brennen
,
C.
,
1969
, “
The Dynamic Balances of Dissolved Air and Heat in Natural Cavity Flows
,”
J. Fluid Mech.
,
37
(
1
), pp.
115
127
.10.1017/S0022112069000449
39.
Franc
,
J.-P.
,
Avellan
,
F.
,
Belahadji
,
B.
,
Billard
,
J. Y.
,
Briançon-Marjollet
,
L.
,
Frechou
,
D.
,
Fruman
,
D. H.
,
Karimi
,
A.
,
Kueny
,
J.-L.
, and
Michel
,
J. M.
,
1995
,
La Cavitation: Mécanismes Physiques et Aspects Industriels, Collection Grenoble Science
,
University of Grenoble, Grenoble
,
France
.
40.
Isselin
,
J. C.
,
Alloncle
,
P.
, and
Autric
,
M.
,
1998
, “
Investigations of Material Damages Induced by an Isolated Vapor Bubble Created by Pulsed Laser
,”
Proceedings of the 3rd International Symposium on Cavitation
,
Grenoble
,
Franc
e
.
41.
Isselin
,
J. C.
,
Alloncle
,
P.
, and
Autric
,
M.
,
1998
, “
On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena
,”
J. Appl. Phys.
,
84
(
10
), pp.
5766
5771
.10.1063/1.368841
42.
Reboud
,
J. L.
, and
Guelin
,
P.
,
1988
, “
Impact Response of an Elastoplastic Medium
,”
Mech. Res. Commun.
, (
15
)
4
, pp.
253
260
.10.1016/0093-6413(88)90020-1
43.
Simoneau
,
R.
, and
Archer
,
A.
,
1997
, “
Transposition of Cavitation Marks on Different Hardness Metals
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting
,
Vancouver, Canada
.
44.
Challier
,
G.
,
2002
, “
Mécanismes d'Interaction Fluide/Structure et de Transfert d'Energie en Erosion de Cavitation
,” Ph.D. thesis, Institut Polytechnique de Grenoble, Grenoble, France.
45.
Fortes-Patella
,
R.
,
Reboud
,
J. L.
, and
Archer
,
A.
,
2000
, “
Cavitation Mark Measurements by 3D Laser Profilometry
,”
Wear
,
246
, pp.
59
67
.10.1016/S0043-1648(00)00446-4
You do not currently have access to this content.