A multiphysics analysis of a linear control solenoid valve coupled with a single degree of freedom (DOF) system is performed to analyze the spool behaviors of the valve. Axially symmetrical simulations are carried out to investigate simultaneously the phenomena of the electromagnetic field and the flow field. The valve spool stroke is determined by the balance between the forces, i.e., the electromagnetic force, hydraulic force, spring force, and damping force. In turn, the spool stroke influences these forces. The arbitrary Lagrangian–Eulerian (ALE) method is employed to describe the dynamic behavior of the system. The simulation results are compared with experimental data to ascertain their accuracy and reliability. In static electromagnetic simulations, a constant electromagnetic force can arise in the linear control solenoid valve because of the leakage of the magnetic flux at the core pole. In the multiphysics simulations, the controllable range of the valve is found to be i = 0.2 – 1.1 A, which is twice the size of that of the electromagnetic simulations. The hydraulic force due to the feedback pressure pushes the spool forward and enables a wider controllable range. Although the supplied pressure improves the system linearity, a critical supplied pressure is required to ensure the linearity of the linear control solenoid valve. The effects of varying the rising time and the maximum external current on the behavior of the valve and its pressure sensitivities are examined.

References

References
1.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
John Wiley & Sons
,
New York
.
2.
Brejcha
,
M. F.
,
1982
,
Automatic Transmissions
,
Prentice-Hall
,
Englewood Cliffs
, NJ.
3.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance—Part I: CFD Modeling
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
772
777
.10.1115/1.1490108
4.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance—Part II: Experimental Verification
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
778
783
.10.1115/1.1490126
5.
Yuan
,
Q.
, and
Li
,
P. Y.
,
2005
, “
Using Steady Flow Force for Unstable Valve Design: Modeling and Experiments
,”
ASME J. Dyn. Sys., Meas., Control
,
127
(3), pp.
451
462
.10.1115/1.1997166
6.
Amirante
,
R.
,
Del Vescovo
,
G.
, and
Lippolis
,
A.
,
2006
, “
Evaluation of the Flow Forces on an Open Centre Directional Control Valve by Means of a Computational Fluid Dynamic Analysis
,”
Energy Convers. Manage.
,
47
, pp.
1748
1760
.10.1016/j.enconman.2005.10.005
7.
Amirante
,
R.
,
Moscatelli
,
P. G.
, and
Catalano
,
L. A.
,
2007
, “
Evaluation of the Flow Forces on a Direct (Single Stage) Proportional Valve by Means of a Computational Fluid Dynamic Analysis
,”
Energy Convers. Manage.
,
48
, pp.
942
953
.10.1016/j.enconman.2006.08.024
8.
Valdés
,
J. R.
,
Miana
,
M. J.
,
Núñez
,
J. L.
, and
Pütz
,
T.
,
2008
, “
Reduced Order Model for Estimation of Fluid Flow and Flow Forces in Hydraulic Proportional Valves
,”
Energy Convers. Manage.
,
49
, pp.
1517
1529
.10.1016/j.enconman.2007.12.010
9.
Palau-Salvador
,
G.
,
Gonzalez-Altozano
,
P.
, and
Arviza-Valverde
,
J.
,
2008
, “
Three-Dimensional Modeling and Geometrical Influence on the Hydraulic Performance of a Control Valve
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011102
.10.1115/1.2813131
10.
Lee
,
G. S.
,
Sung
,
H. J.
,
Kim
,
H. C.
, and
Lee
,
H. W.
,
2010
, “
Flow Force Analysis of a Variable Force Solenoid Valve for Automatic Transmissions
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
031103
.10.1115/1.4001070
11.
Kovetz
,
A.
,
1990
,
The Principles of Electromagnetic Theory
,
Cambridge University Press
,
Cambridge
, UK.
12.
Jin
,
J.
,
2002
,
The Finite Element Method in Electromagnetics
, 2nd ed.,
Wiley-IEEE Press
,
New York
.
13.
Watanabe
,
H.
,
Ichise
,
S.
,
Nagaoka
, T., and
Tsuchiya
,
T.
,
2005
, “
Development of Compact and High Performance Fuel Injector Using Electromagnetic Field Simulation
,” Detroit, MI, SAE Paper No. 32-0019.
14.
Bircher
,
F.
, and
Marmet
,
P.
,
2009
, “
Multiphysics Modeling of a Micro Valve
,”
Proceedings of the European COMSOL Conference
,
Milan, Italy
, Paper No. 6679.
15.
COMSOL
,
2011
, “COMSOL Multiphysics 4.2 User's Guide.”
16.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
,
1997
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
135
(
2
), pp.
198
216
.10.1006/jcph.1997.5702
17.
Schenk, O., “PARDISO Solver Project,” http://www.pardiso-project.org/
18.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
305
319
.10.1016/S0045-7825(00)00203-6
You do not currently have access to this content.