In order to improve internal unsteady flow in a double-blade centrifugal pump (DBCP), this study used major geometric parameters of the original design as the initial values, heads at three conditions (i.e., 80% design flow rate, 100% design flow rate, and 120% design flow rate) as the constraints conditions, and the maximum of weighted average efficiency at the three conditions as the objective function. An adaptive simulated annealing algorithm was selected to solve the energy performance calculation model and the supertransitive approximation method was applied to fix optimal weight factors of individual objectives. On the basis of hydraulic performance optimization, three-condition automatic computational fluid dynamics (CFD) optimization of impeller meridional plane for the DBCP was realized by means of Isight software integrated Pro/E, Gambit, and Fluent software. The shroud arc radii R0 and R1, shroud angle T1, hub arc radius R2, and hub angle T2 on the meridional plane were selected as the design variables and the maximum of weighted average hydraulic efficiency at the three conditions was chosen as the objective function. Performance characteristic test and particle image velocimetry (PIV) measurements of internal flow in the DBCP were conducted. Performance characteristic test results show that the weighted average efficiency of the impeller after the three-condition optimization has increased by 1.46% than that of original design. PIV measurements results show that vortex or recirculation phenomena in the impeller are distinctly improved under the three conditions.

References

References
1.
Karassik
,
I. J.
,
Messina
,
J. P.
,
Cooper
,
P.
, and
Heald
,
C. C.
,
2008
,
Pump Handbook
,
4th ed.
,
McGraw-Hill
,
New York
.
2.
Guan
,
X. F.
,
2011
,
Modern Pump Theory and Design
,
China Astronautic
,
Beijing, China
.
3.
Liu
,
H. L.
, and
Tan
,
M. G.
,
2012
,
Double Channel Pump
,
Jiangsu University Press
,
Zhenjiang, China
.
4.
Chen
,
X.
, and
Zhang
,
F. Y.
,
2000
, “
Design of the Closed Double Blade Pump
,”
Pump Technol.
,
3
, pp.
19
23
.
5.
Huang
,
J. G.
,
2003
, “
Design and Performance Characteristic of Impeller for Sewage Pump
,”
Pump Technol.
,
2
, pp.
17
21
.
6.
Zhao
,
W. Y.
,
Wang
,
Z.
,
Li
,
Y. S.
, and
Zhang
,
L.
,
2008
, “
Numerical Simulation of Impeller Wear for a Centrifugal Sewage Pump
,”
Pump Technol.
,
3
, pp.
17
19
.
7.
Zhu
,
R. S.
,
Hu
,
Z. Q.
, and
Yang
,
A. L.
,
2010
, “
Optimum Design of Efficient Sewage Pump Impeller
,”
Pump Technol.
,
3
, pp.
5
7
.
8.
Zhu
,
R. S.
,
Hu
,
Z. Q.
, and
Yang
,
A. L.
,
2011
, “
Numerical Simulation of Unsteady Flow in Double-Blade Pump
,”
J. Drain. Irrig. Machin. Eng.
,
29
(
1
), pp.
26
30
.10.3969/j.issn.1674-8530.2011.01.006
9.
Zhu
,
R. S.
,
Hu
,
Z. Q.
, and
Fu
,
Q.
,
2010
, “
Numerical Simulation of Pressure Fluctuation in Double-Blade Pump
,”
Trans. CSAE
,
26
(
6
), pp.
129
134
.10.3969/j.issn.1002-6819.2010.06.023
10.
Liu
,
H. L.
,
Wang
,
K.
,
Yuan
,
S. Q.
,
Tan
,
M. G.
,
Wang
,
Y.
, and
Ru
,
W. M.
,
2012
, “
3D PIV Test of Inner Flow in a Double Blade Pump Impeller
,”
Chin. J. Mech. Eng.
,
25
(
3
), pp.
491
497
.10.3901/CJME.2012.03.491
11.
Wang
,
K.
,
Liu
,
H. L.
,
Yuan
,
S. Q.
,
Tan
,
M. G.
, and
Yang
,
D. S.
,
2011
, “
3-D PIV Test of Inner Flow in a Double-Blade Pump Under Zero Flow Rate Condition
,”
Trans. Chin. Soc. Agr. Machin.
,
42
(
7
), pp.
75
79
.CNKI:SUN:NYJX.0.2011-07-013
12.
Tan
,
L.
,
Cao
,
S. L.
,
Wang
,
Y. M.
, and
Zhu
,
B. S.
,
2012
, “
Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate
,”
Chin. Phys. Lett.
,
29
(
1
), p.
014702
.10.1088/0256-307X/29/1/014702
13.
Lucius
,
A.
, and
Brenner
,
G.
,
2011
, “
Numerical Simulation and Evaluation of Velocity Fluctuations During Rotating Stall of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081102
.10.1115/1.4004636
14.
Li
,
Z. F.
,
Wu
,
D. Z.
,
Wang
,
L. Q.
, and
Huang
,
B.
,
2010
, “
Numerical Simulation of the Transient Flow in a Centrifugal Pump During Starting Period
,”
ASME J. Fluid Eng.
,
132
(
8
), p.
081102
.10.1115/1.4002056
15.
González
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
348
355
.10.1115/1.1457452
16.
Wu
,
Y. L.
,
Liu
,
S. H.
,
Yuan
,
H. J.
, and
Shao
,
J.
,
2011
, “
PIV Measurement on Internal Instantaneous Flows of a Centrifugal Pump
,”
Sci. China Technol. Sci.
,
54
(
2
), pp.
270
276
.10.1007/s11431-010-4262-3
17.
Westra
,
R. W.
,
Broersma
,
L.
,
van Andel
,
K.
, and
Kruyt
,
N. P.
,
2010
, “
PIV Measurements and CFD Computations of Secondary Flow in a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061104
.10.1115/1.4001803
18.
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Sommer
,
M.
,
2006
, “
Flow Field Visualization of a Single-Blade Centrifugal Pump Using PIV-Method—Comparison to Numerical Results
,”
J. Visual.
,
9
(
4
), pp.
358
358
.10.1007/BF03181771
19.
Narasimhan
,
R.
,
1982
, “
A Geometric Averaging Procedure for Constructing Supertransitive Approximation to Binary Comparison Matrices
,”
Fuzzy Sets Syst.
,
8
(
1
), pp.
53
61
.10.1016/0165-0114(82)90029-X
You do not currently have access to this content.