A computational investigation is carried out to study the effect of oscillations on vortex generation and vorticity flux for flow over a deforming arc airfoil. The flow is laminar, incompressible, and two-dimensional at Re = 10,000. The computations are performed using the finite-volume method and a deforming mesh. The vorticity flux is evaluated on the surface of the airfoil. A variety of flow features are observed. Boundary layer flows, vortical structures, rolling vortices, and vortex layers are all present and have some degree of influence on the aerodynamic characteristics of the arc airfoil. Tangential pressure gradient on the surface and tangential acceleration of the airfoil are local sources of vorticity generation, and they result in the flux of vorticity from airfoil into fluid.

References

References
1.
Panton
,
R. L.
,
2005
,
Incompressible Flow
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
2.
Wilson
,
M. M.
,
Peng
,
J.
,
Dabiri
,
J. O.
, and
Eldredge
,
J. D.
,
2009
, “
Lagrangian Coherent Structures in Low-Reynolds Number Swimming
,”
J. Phys.: Condens. Matter
,
21
, p.
204105
.10.1088/0953-8984/21/20/204105
3.
Dabiri
,
J. O.
,
2009
, “
Optimal Vortex Formation as a Unifying Principle in Biological Propulsion
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
17
33
.10.1146/annurev.fluid.010908.165232
4.
Franco
,
E.
,
Pekarek
,
D. N.
,
Peng
,
J.
, and
Dabiri
,
J. O.
,
2007
, “
Geometry of Unsteady Fluid Transport During Fluid-Structure Interactions
,”
J. Fluid Mech.
,
589
, pp.
125
145
.10.1017/S0022112007007872
5.
Molki
,
M.
, and
Breuer
,
K.
,
2010
, “
Oscillatory Motions of a Prestrained Compliant Membrane Caused by Fluid-Membrane Interaction
,”
J. Fluids Struct.
,
26
(
3
), pp.
339
358
.10.1016/j.jfluidstructs.2009.11.003
6.
Song
,
A.
,
Tian
,
X.
,
Israeli
,
E.
,
Galvao
,
R.
,
Bishop
,
K.
,
Swartz
,
S.
, and
Breuer
,
K.
,
2008
, “
Aeromechanics of Membrane Wings With Implications for Animal Flight
,”
AIAA J.
,
46
(
8
), pp.
2096
2106
.10.2514/1.36694
7.
Jones
,
K. D.
, and
Platzer
,
M. F.
,
1997
, “
Numerical Computation of Flapping-Wing Propulsion and Power Extraction
,” AIAA Paper No. 97-0826.
8.
Tuncer
,
I. H.
, and
Platzer
,
M. F.
,
2000
, “
Computational Study of Flapping Airfoil Aerodynamics
,”
J. Aircr.
,
37
(
3
), pp.
514
520
.10.2514/2.2628
9.
Read
,
D. A.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2003
, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
,
17
(
1
), pp.
163
183
.10.1016/S0889-9746(02)00115-9
10.
Young
,
J.
, and
Lai
,
J. C. S.
,
2004
, “
Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil
,”
AIAA J.
,
42
(
10
), pp.
2042
2052
.10.2514/1.5070
11.
Levy
,
D. E.
, and
Seifert
,
A.
,
2009
, “
Simplified Dragonfly Airfoil Aerodynamics at Reynolds Numbers Below 8000
,”
Phys. Fluids
,
21
, p.
071901
.10.1063/1.3166867
12.
Bohl
,
D. G.
, and
Koochesfahani
,
M. M.
,
2009
, “
MTV Measurements of the Vortical Field in the Wake of an Airfoil Oscillating at High Reduced Frequency
,”
J. Fluid Mech.
,
620
, pp.
63
88
.10.1017/S0022112008004734
13.
Griffin
,
O. M.
,
1978
, “
Universal Strouhal Number for the Locking-On of Vortex Shedding to the Vibrations of Bluff Cylinders
,”
J. Fluid Mech.
,
85
, pp.
591
606
.10.1017/S0022112078000804
14.
Wu
,
Z. J.
,
1992
, “
Higher Frequency Hydrodynamic Force Components on a Vibrating Cylinder in Current
,”
Proceedings of the 7th International Offshore and Polar Engineering Conference
,
San Francisco, CA
, pp.
375
382
.
15.
Akbari
,
M. H.
, and
Price
,
S. J.
,
2005
, “
Numerical Investigation of Flow Patterns for Staggered Cylinder Pairs in Cross-Flow
,”
J. Fluids Struct.
,
20
(
4
), pp.
533
554
.10.1016/j.jfluidstructs.2005.02.005
16.
Lee
,
S. J.
, and
Lee
,
J. Y.
,
2008
, “
PIV Measurements of the Wake Behind a Rotationally Oscillating Circular Cylinder
,”
J. Fluids Struct.
,
24
(
1
), pp.
2
17
.10.1016/j.jfluidstructs.2007.06.001
17.
Zheng
,
Z. C.
, and
Zhang
,
N.
,
2008
, “
Frequency Effects on Lift and Drag for Flow Past an Oscillating Cylinder
,”
J. Fluids Struct.
,
24
(
3
), pp.
382
399
.10.1016/j.jfluidstructs.2007.08.010
18.
Prasanth
,
T. K.
, and
Mittal
,
S.
,
2009
, “
Vortex-Induced Vibration of Two Circular Cylinders at Low Reynolds Number
,”
J. Fluids Struct.
,
25
(
4
), pp.
731
741
.10.1016/j.jfluidstructs.2008.12.002
19.
Morse
,
T. L.
, and
Williamson
,
C. H. K.
,
2009
, “
Prediction of Vortex-Induced Vibration Response by Employing Controlled Motion
,”
J. Fluid Mech.
,
634
, pp.
5
39
.10.1017/S0022112009990516
20.
Wang
,
Z. J.
,
2000
, “
Vortex Shedding and Frequency Selection in Flapping Flight
,”
J. Fluid Mech.
,
410
, pp.
323
341
.10.1017/S0022112099008071
21.
Gulcat
,
U.
,
2009
, “
Propulsive Force of a Flexible Flapping Thin Airfoil
,”
J. Aircr.
,
46
(
2
), pp.
465
473
.10.2514/1.35310
22.
Okamoto
,
M.
, and
Azuma
,
A.
,
2005
, “
Experimental Study on Aerodynamic Characteristics of Unsteady Wings at Low Reynolds Number
,”
AIAA J.
,
43
(
12
), pp.
2526
2536
.10.2514/1.14813
23.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
24.
Wu
,
J. Z.
, and
Wu
,
J. M.
,
1993
, “
Interactions Between a Solid Surface and a Viscous Compressible Flow Field
,”
J. Fluid Mech.
,
254
, pp.
183
211
.10.1017/S0022112093002083
25.
Wu
,
J. Z.
,
Wu
,
X. H.
, and
Wu
,
J. M.
,
1993
, “
Streaming Vorticity Flux From Oscillating Walls With Finite Amplitude
,”
Phys. Fluids
,
5
(
8
), pp.
1933
1938
.10.1063/1.858819
26.
Matlab, 2011, version 7.13.0.564 (R2011b), The MathWorks Inc., Natick, MA.
27.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(7), p.
078001
.10.1115/1.2960953
28.
Wu
,
J. Z.
, and
Wu
,
J. M.
,
1996
, “
Vorticity Dynamics on Boundaries
,”
Advances in Applied Mechanics
,
J. W.
Hutchinson
, and
T. Y.
Wu
, eds.,
Academic Press, San Diego, CA
, pp.
119
275
.
You do not currently have access to this content.