In this paper, we investigate the influence of temperature-dependent fluid properties on the flow and heat transfer characteristics of an electrically conducting dusty fluid over a stretching sheet. Temperature-dependent fluid properties are assumed to vary as a function of the temperature. The governing coupled nonlinear partial differential equations along with the appropriate boundary conditions are transformed into coupled, nonlinear ordinary differential equations by a similarity transformation. The resultant coupled highly nonlinear ordinary differential equations are solved numerically by a second order implicit finite difference scheme known as the Keller–Box method. The numerical solutions are compared with the approximate analytical solutions, obtained by a perturbation technique. The analysis reveals that even in the presence of variable fluid properties the transverse velocity of the fluid is to decrease with an increase in the fluid-particle interaction parameter. This observation holds even in the presence of magnetic field. Furthermore, the effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are assessed through tables and graphs.

References

References
1.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
, pp.
645
647
.10.1007/BF01587695
2.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.10.1002/cjce.5450550619
3.
Vleggaar
,
J
.,
1977
, “
Laminar Boundary-Layer Behaviour on Continuous, Accelerating Surfaces
,”
Chem. Eng. Sci.
,
32
, pp.
1517
1525
.10.1016/0009-2509(77)80249-2
4.
Grubka
,
L. J.
, and
Bobba
,
K. M.
,
1985
, “
Heat Transfer Characteristics of a Continuous, Stretching Surface With Variable Temperature
,”
ASME J. Heat Transfer
,
107
, pp.
248
250
.10.1115/1.3247387
5.
Siddappa
,
B.
, and
Abel
,
M. S.
,
1985
, “
Non-Newtonian Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
36
, pp.
47
54
.10.1007/BF00944900
6.
Chen
,
C. H.
,
1998
, “
Laminar Mixed Convection Adjacent to Vertical Continuously Stretching Sheets
,”
Heat Mass Transf.
,
33
, pp.
471
476
.10.1007/s002310050217
7.
Dutta
,
B. K.
,
1989
, ”
Heat Transfer From a Stretching Sheet With Uniform Suction and Blowing
,”
Acta Mech.
,
78
, pp.
255
262
.10.1007/BF01179221
8.
Ali
,
M. E.
,
1994
, “
Heat Transfer Characteristics of a Continuous Stretching Surface
,”
Warme-und Stoffubertragung
,
29
, pp.
227
234
.10.1007/BF01539754
9.
Cortell
,
R
.,
2005
, “
Flow and Heat Transfer of a Fluid Through a Porous Medium Over a Stretching Surface With Internal Heat Generation/Absorption and Suction/Blowing
,”
Fluid Dynam. Res.
,
37
, pp.
231
245
.10.1016/j.fluiddyn.2005.05.001
10.
Liu
,
I. C.
,
2005
, ”
A Note on Heat and Mass Transfer for Hydromagnetic Flow Over a Stretching Sheet
,”
Int. Comm. Heat Mass Transf.
,
32
, pp.
1075
1084
.10.1016/j.icheatmasstransfer.2005.02.003
11.
Chakrabarti
,
K. M.
,
1977
, “
Note on Boundary Layer in a Dusty Gas
,”
AIAA J.
,
12
, pp.
1136
1137
.10.2514/3.49427
12.
Datta
,
N.
, and
Mishra
,
S. K.
,
1982
, “
Boundary Layer Flow of a Dusty Fluid Over a Semi-Infinite Flat Plate
,”
Acta Mech.
,
42
, pp.
71
83
.10.1007/BF01176514
13.
Agranat
,
V. M.
,
1988
, “
Effect of Pressure Gradient on Friction and Heat Transfer in a Dusty Boundary Layer
,”
Fluid Dyn.
,
23
, pp.
729
732
.10.1007/BF02614150
14.
Kumar
,
S. K.
, and
Sharma
,
L. V. K. V.
,
1991
, “
Fluid-Particle Suspension Flow Past a Stretching Sheet
,”
Int. J. Eng. Sci.
,
29
, pp.
123
132
.10.1016/0020-7225(91)90082-E
15.
Vajravelu
,
K.
, and
Nayfeh
,
J.
,
1992
, “
Hydromagnetic Flow of a Dusty Fluid Over a Stretching Sheet
,”
Int. J. Nonlinear Mech.
,
27
, pp.
937
945
.10.1016/0020-7462(92)90046-A
16.
Asmolov
,
E. S.
, and
Manuilovich
,
S. V.
,
1998
, “
Stability of a Dusty Gas Laminar Boundary Layer on a Flat Plate
,”
J. Fluid Mech.
,
365
, pp.
137
170
.10.1017/S0022112098001256
17.
Palani
,
G.
, and
Ganesan
,
P.
,
2007
, “
Heat Transfer Effects on Dusty Gas Flow Past a Semi-Infinite Inclined Plate
,”
Forsch Ingenieurwes (Springer)
,
71
, pp.
223
230
.10.1007/s10010-007-0061-9
18.
Gireesha
,
B. J.
,
Ramesh
,
G. K.
,
Abel
,
M. S.
, and
Bagewadi
,
C. S.
,
2011
, “
Boundary Layer Flow and Heat Transfer of a Dusty Fluid Over a Stretching Sheet With Non-Uniform Heat Source/Sink
,”
Int. J. Multiphase Flow
,
37
, pp.
977
982
.10.1016/j.ijmultiphaseflow.2011.03.014
19.
Herwig
,
H.
, and
Wickern
,
G.
,
1986
, “
The Effect of Variable Properties on Laminar Boundary Layer Flow
,”
Warme-und Stoffubertragung
,
20
, pp.
47
57
.10.1007/BF00999737
20.
Lai
,
F. C.
, and
Kulacki
,
F. A.
,
1990
, “
The Effect of Variable Viscosity on Convective Heat Transfer Along a Vertical Surface in a Saturated Porous Medium
,”
Int. J. Heat Mass Transf.
,
33
, pp.
1028
1031
.10.1016/0017-9310(90)90084-8
21.
Takhar
,
H. S.
,
Nitu
,
S.
, and
Pop
,
I.
,
1991
, “
Boundary Layer Flow due to a Moving Plate: Variable Fluid Properties
,”
Acta Mech.
,
90
, pp.
37
42
.10.1007/BF01177397
22.
Pop
,
I.
,
Gorla
,
R. S. R.
, and
Rashidi
,
M.
,
1992
, “
The Effect of Variable Viscosity on Flow and Heat Transfer to a Continuous Moving Flat Plate
,”
Int. J. Eng. Sci.
,
30
, pp.
1
6
.10.1016/0020-7225(92)90115-W
23.
Hassanien
,
I. A.
,
1997
, “
The Effect of Variable Viscosity on Flow and Heat Transfer on a Continuous Stretching Surface
,”
ZAMM
,
77
, pp.
876
880
.10.1002/zamm.19970771114
24.
Abel
,
M. S.
,
Khan
,
S. K.
, and
Prasad
,
K. V.
,
2002
, “
Study of Visco-Elastic Fluid Flow and Heat Transfer Over a Stretching Sheet With Variable Viscosity
,”
Int. J. Nonlinear Mech.
,
37
, pp.
81
88
.10.1016/S0020-7462(00)00098-6
25.
Seddeek
,
M. A.
,
2005
, “
Finite-Element Method for the Effects of Chemical Reaction, Variable Viscosity, Thermophoresis and Heat Generation/Absorption on a Boundary-Layer Hydromagnetic Flow With Heat and Mass Transfer Over a Heat Surface
,”
Acta Mech.
,
177
, pp.
1
18
.10.1007/s00707-005-0249-8
26.
Ali
,
M. E.
,
2006
, “
The Effect of Variable Viscosity on Mixed Convection Heat Transfer Along a Vertical Moving Surface
,”
Int. J. Thermal Sci.
,
45
, pp.
60
69
.10.1016/j.ijthermalsci.2005.04.006
27.
Prasad
,
K. V.
,
Vajravelu
,
K.
, and
Datti
,
P. S.
,
2010
, “
The Effects of Variable Fluid Properties on the Hydromagnetic Flow and Heat Transfer Over a Non-Linearly Stretching Sheet
,”
Int. J. Thermal Sci.
,
49
, pp.
603
610
.10.1016/j.ijthermalsci.2009.08.005
28.
Kays
,
W. M.
,
1966
,
Convective Heat and Mass Transfer
,
McGraw Hill
,
New York
.
29.
Weast
,
R. C.
,
Astle
,
M. J.
, and
Beyer
,
W. H.
,
1986
,
Handbook of Chemistry and Physics
,
67th
ed.,
CRC Press
,
Boca Raton, FL
.
30.
Chakrabarti
,
A.
, and
Gupta
,
A. S.
,
1979
, ”
Hydromagnetic Flow and Heat Transfer Over a Stretching Sheet
,”
Quart. Appl. Math.
,
37
, pp.
73
78
.
31.
Andersson
,
H. I.
,
Bech
,
K. H.
, and
Dandapat
,
B. S.
,
1992
, “
Magnetohydrodynamic Flow of a Power Law Fluid Over a Stretching Sheet
,”
Int. J. Nonlinear Mech.
,
27
, pp.
929
936
.10.1016/0020-7462(92)90045-9
32.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer-Verlag
,
New York
.
33.
Keller
,
H. B.
,
1992
,
Numerical Methods for Two-Point Boundary Value Problems
,
Dover
,
New York
.
You do not currently have access to this content.