After three decades of accumulated experimental and numerical results, a comprehensive understanding of the spatial evolution of axisymmetric turbulent boundary layers (ATBL) along long thin cylinders still eludes both scientists and engineers. While experimentalists dealt with axial alignment complexities, computationalists lacked proper inflow boundary conditions. Herein, we correct this latter deficiency and initiate an investigation of the thin cylinder turbulence under low Reynolds numbers and high transverse curvatures (boundary layer thicknesses to radius). Using the large-eddy simulation (LES) methodology, we are particularly interested in the radial propagation of the transverse curvature on the ATBL statistics. A ten-simulation matrix was constructed to examine these effects with validation against the experimental evidence. These tests investigated the ATBL maturity up to transverse curvatures approaching 2 orders of magnitude. A recently developed turbulent inflow procedure for the thin cylinder was implemented that couples a dynamic form of Spalding’s expression for rescaling the mean streamwise velocity with recycling of all superimposed turbulent fluctuations. The technique specifically circumvents intensive computations from the cylinder leading edge, and the rescaling-recycling combination minimizes the inflow turbulent regeneration length under very high transverse curvatures. After the initial transition phase in each LES computation, the respective numerical uncertainty was quantified to ensure sufficient spatial resolution within the discretized domain for resolving the energy-bearing scales of the turbulent motion. For the present low-Re conditions, the strength of the log layer steadily diminishes under continuous rise in the transverse curvature whereas the scaled fluctuating intensities elevate (except for the dominate shear stresses) with no sign towards full maturity. Each simulation reveals a boundary layer thickness that grows downstream by a factor of 7 relative to the momentum thickness with a linear influence of the transverse curvature on the wall-shear stress coefficient.

References

1.
Jordan
,
S. A.
, 2012, “
An Inflow Method for Axisymmetric Turbulent Boundary Layers Along Very Long Slender Cylinders
,”
ASME J. Fluids Eng.
,
134
, p.
051202
.
2.
Rao
,
G. N. V.
, and
Keshavan
,
N. R.
, 1972, “
Axisymmetric Turbulent Boundary Layers in Zero Pressure-Gradient Flows
,”
ASME J. Appl. Mech.
,
39
, pp.
25
32
.
3.
Rao
,
G. N. V.
, 1967, “
The Law of the Wall in a Thick Axisymmetric Turbulent Boundary Layer
,”
ASME J. Appl. Mech.
,
34
, pp.
237
238
.
4.
Reid
,
R. O.
, and
Wilson
,
B. W.
, 1963, “
Boundary Flow Along a Circular Cylinder
,”
ASCE J. Hydr. Div.
,
89
, pp.
21
40
.
5.
Willmarth
,
W. W.
,
Winkel
,
R. E.
,
Sharma
,
L. K.
, and
Bogar
,
T. J.
, 1976, “
Axially Symmetric Turbulent Boundary Layers on Cylinders: Mean Velocity Profiles and Wall Pressure Fluctuations
,”
J. Fluid Mech.
,
76
(
1
), pp.
35
64
.
6.
Luxton
,
R. E.
,
Bull
,
M. K.
, and
Rajagopalan
,
S.
, 1984, “
The Thick Turbulent Boundary Layer on a Long Fine Cylinder in Axial Flow
,”
Aeronaut. J.
,
88
, pp.
186
199
.
7.
Patel
,
V. C.
, 1973, “
A Unified View of the Law of the Wall Using Mixing-Length Theory
,”
Aeronaut. Q.
,
24
, pp.
55
70
.
8.
Denli
,
N.
, and
Landweber
,
L.
, 1979, “
Thick Axisymmetric Turbulent Boundary Layer on a Circular Cylinder
,”
J. Hydronaut.
,
13
, pp.
92
104
.
9.
Huffman
,
G. D.
, and
Bradshaw
,
P.
, 1972, “
A Note on von Karman’s Constant in Low Reynolds Number Turbulent Flows
,”
J. Fluid Mech.
,
53
, pp.
45
60
.
10.
Lueptow
,
R. M.
,
Leehey
,
P.
, and
Stellinger
,
T.
, 1985, “
The Thick, Turbulent Boundary Layer on a Cylinder: Mean and Fluctuating Velocities
,”
Phys. Fluids
,
28
(
12
), pp.
3495
3505
.
11.
Lueptow
,
R. M.
, and
Haritonidis
,
J. H.
, 1987, “
The Structure of Turbulent Boundary Layer on a Cylinder in Axial Flow
,”
Phys. Fluids
,
30
, pp.
2993
3005
.
12.
Lueptow
,
R. M.
, 1988, “
Turbulent Boundary Layer on a Cylinder Axial Flow
,”
Naval Underwater Systems Center
, Technical Report No. 8389.
13.
Lueptow
,
R. M.
, 1990, “
Turbulent Boundary Layer on a Cylinder in Axial Flow
,”
AIAA J.
,
28
(
10
), pp.
1705
1706
.
14.
Lueptow
,
R. M.
, and
Jackson
,
C. P.
, 1991, “
Near-Wall Streaky Structure in a Turbulent Boundary Layer on a Cylinder
,”
Phys. Fluids
,
3
(
11
), pp.
2822
2824
.
15.
Snarski
,
S. R.
, and
Lueptow
,
R. M.
, 1995, “
Wall Pressure and Coherent Structures in a Turbulent Boundary Layer on a Cylinder in Axial Flow
,”
J. Fluid Mech.
,
286
, pp.
137
171
.
16.
Nepomuceno
,
H. G.
, and
Lueptow
,
R. M.
, 1997, “
Pressure and Shear Stress Measurements at the Wall in a Turbulent Boundary Layer on a Cylinder
,”
Phys. Fluids
,
9
, pp.
2732
2739
.
17.
Neves
,
J. C.
,
Moin
,
P.
, and
Moser
,
R. D.
, 1994, “
Effects of Convex Transverse Curvature on Wall-Bounded Turbulence. Part 1. The Velocity and Vorticity
,”
J. Fluid Mech.
,
272
, pp.
349
382
.
18.
Tutty
,
O. R.
, 2008, “
Flow Along a Long Thin Cylinder
,”
J. Fluid Mech.
,
602
, pp.
1
37
.
19.
Jordan
,
S. A.
, 2011, “
Axisymmetric Turbulent Statistics of Long Slender Circular Cylinders
,”
Phys. Fluids
,
23
, p.
075105
.
20.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
, pp.
233
258
.
21.
Jordan
,
S. A.
, 1999, “
A Large-Eddy Simulation Methodology in Generalized Curvilinear Coordinates
,”
J. Comput. Phys.
,
148
, pp.
322
340
.
22.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
, pp.
633
635
.
23.
Jordan
,
S. A.
, 2007, “
The Spatial Resolution Properties of Composite Compact Finite Differencing
,”
J. Comput. Phys.
,
221
, pp.
558
576
.
24.
Keating
,
A.
,
Piomelli
,
U.
,
Balaras
,
E.
, and
Kaltenbach
,
H.-J.
, 2004, “
A Priori and A Posteriori Tests of Inflow Conditions for Large-Eddy Simulation
,”
Phys. Fluids
,
16
, pp.
4696
4712
.
25.
Jordan
,
S. A.
, 2005, “
A Priori Assessments of Numerical Uncertainty in Large-Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
, pp.
1171
1182
.
26.
Klebanoff
,
P. S.
, and
Diehl
,
Z. W.
, 1951, “
Some Features of Artificially Thickened Fully Developed Turbulent Boundary Layers With Zero Pressure Gradient
,” NASA Technical Paper No. 2475.
27.
Thompson
,
J. F.
,
Warsi
,
Z. U. A.
, and
Mastin
,
C. W.
, 1985,
Numerical Grid Generation
,
North-Holland
,
Amsterdam
.
You do not currently have access to this content.