Electromagnetic fields may be used to control the flow separation during the flow of electrically conducting fluids around bluff obstacles. The steady separated flow around bluff bodies at low Reynolds numbers almost behaves as a creeping flow at a certain field strength. This phenomena, although already known, is exactly quantified through numerical simulation and the critical field strength of an externally applied magnetic field is obtained, for which the flow separation is completely suppressed. The flow of a viscous, incompressible, and electrically conducting fluid (preferably liquid metal or an electrolyte solution) at a Reynolds number range of 10–40 and at a low magnetic Reynolds number is considered in an unbounded medium subjected to uniform magnetic field strength along the transverse direction. Circular and square cross sections of the bluff obstacles are considered for simulation purposes. Fictitious confining boundaries are chosen on the lateral sides of the computational domain that makes the blockage ratio (the ratio of the cylinder size to the width of the domain) 5%. The two-dimensional numerical simulation is performed following a finite volume approach based on the semi-implicit method for pressure linked equations (SIMPLE) algorithm. The major contribution is the determination of the critical Hartmann number for the complete suppression of the flow separation around circular and square cylinders for the steady flow in the low Reynolds number laminar regime. The recirculation length and separation angle are computed to substantiate the findings. Additionally, the drag and skin friction coefficients are computed to show the aerodynamic response of the obstacles under imposed magnetic field conditions.

References

1.
Lachmann
,
G. V.
, ed., 1961,
Boundary Layer and Flow Control
, Vol.
2
,
Pergamon
,
Oxford
.
2.
Chang
,
P. K.
, 1976,
Control of Flow Separation
,
Hemisphere
,
Washington, D.C
.
3.
Gad-el-Hak
,
M.
, 2000,
Flow Control: Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
Cambridge, England
.
4.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
, 2000, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
, pp.
487
545
.
5.
Wygnanski
,
I.
, 1997, “
Boundary Layer and Flow Control by Periodic Addition of Momentum
,” 4th AIAA Shear Flow Control Conference, Snowmass Village, CO, Paper No. AIAA-97-2117.
6.
Alemany
,
A.
,
Moreau
,
R.
,
Sulem
,
P. L.
, and
Frisch
,
U.
, 1979, “
Influence of an External Magnetic Field on Homogeneous MHD Turbulence
,”
J. Mec.
,
18
, pp.
277
313
.
7.
Tsinober
,
A. B.
, and
Shtern
,
A. G.
, 1967, “
Possibility of Increasing the Flow Stability in a Boundary Layer by Means of Crossed Electric and Magnetic Fields
,”
Magnetohydrodynamics
,
3
, pp.
152
154
.
8.
Sekhar
,
T. V. S.
,
Sivakumar
,
R.
, and
Vimala
,
S.
, 2010, “
On the Effective Control of Flow Separation Around a Sphere at Low Magnetic Reynolds Number
,” Proceedings of the 37th National and 4th International Conference on Fluid Mechanics and Fluid Power, Dec. 16–18, IIT Madras, Chennai, India.
9.
Leibovich
,
S.
, 1967, “
Magnetohydrodynamic Flow at a Rear Stagnation Point
,”
J. Fluid Mech.
,
29
, pp.
401
413
.
10.
Buckmaster
,
J.
, 1969, “
Separation and Magnetohydrodynamics
,”
J. Fluid Mech.
,
38
, pp.
481
498
.
11.
Bramley
,
J. S.
, 1974, “
Magnetohydrodynamic Flow Past a Circular Cylinder
,”
ZAMP
,
25
, pp.
409
416
.
12.
Bramley
,
J. S.
, 1974, “
Magnetohydrodynamic Flow Past a Circular Cylinder II
,”
ZAMP
,
26
, pp.
203
209
.
13.
Gerbeth
,
G.
,
Thess
,
A.
, and
Marty
,
P.
, 1990, “
Theoretical Study of the MHD Flow Around a Cylinder in Crossed Electric and Magnetic Fields
,”
Eur. J. Mech. B/Fluids
,
9
, pp.
239
257
.
14.
Josserand
,
J.
,
Marty
,
Ph.
, and
Alemany
,
A.
, 1993, “
Pressure and Drag Measurements on a Cylinder in a Liquid Metal Flow With an Aligned Magnetic Field
,”
Fluid Dyn. Res.
,
11
, pp.
107
117
.
15.
Mutschke
,
G.
,
Shatrov
,
V.
, and
Gerbeth
,
G.
, 1998, “
Cylinder Wake Control by Magnetic Fields in Liquid Metal Flows
,”
Exp. Therm. Fluid Sci.
,
16
, pp.
92
99
.
16.
Midya
,
C.
,
Layek
,
G. C.
,
Gupta
,
A. S.
, and
Mahapatra
,
R. T.
, 2003, “
Magnetohydrodynamic Viscous Flow Separation in a Channel With Constriction
,”
ASME J. Fluids Eng.
,
125
, pp.
952
962
.
17.
Dennis
,
B. H.
,
Dulikravich
,
G. S.
, and
Yoshimura
,
S.
, 2004, “
Control of Flow Separation Over a Circular Cylinder With Electro-Magnetic Fields: Numerical Simulation
,” 6th World Congress on Computational Mechanics, Beijing, China, Sept. 5–10.
18.
Weier
,
T.
, and
Gerbeth
,
G.
, 2004, “
Control of Separated Flows by Time Periodic Lorentz Forces
,”
Eur. J. Mech. B/Fluids
,
23
, pp.
835
849
.
19.
Sekhar
,
T. V. S.
,
Sivakumar
,
R.
, and
Ravikumar
,
T. V. R.
, 2006, “
Flow Around a Circular Cylinder in an External Magnetic Field at High Reynolds Numbers
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
, pp.
740
759
.
20.
Singha
,
S.
,
Sinhamahapatra
,
K. P.
, and
Mukherjea
,
S. K.
, 2007, “
Control of Vortex Shedding From a Bluff Body Using Imposed Magnetic Field
,”
ASME J. Fluids Eng.
,
129
, pp.
517
523
.
21.
Singha
,
S.
and
Sinhamahapatra
,
K. P.
, 2011, “
Control of Vortex Shedding From a Circular Cylinder Using Imposed Transverse Magnetic Field
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
, pp.
32
45
.
22.
Smolentsev
,
S.
,
Cuevas
,
S.
, and
Beltrán
,
A.
, 2010, “
Induced Electric Current-Based Formulation in Computations of Low Magnetic Reynolds Number Magnetohydrodynamic Flows
,”
J. Comput. Phys.
,
229
, pp.
1558
1572
.
23.
Leonard
,
B. P.
, and
Mokhtari
,
S.
, 1990, “
ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,” NASA Lewis Research Center, Report No. NASA-TM-102568.
24.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
John Wiley & Sons
,
New York
.
25.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, D.C
.
26.
Takami
,
H.
, and
Keller
,
H. B.
, 1969, “
Steady Two-Dimensional Viscous Flow of an Incompressible Fluid Past a Circular Cylinder
,”
Phys. Fluids
,
12
(
II
), pp.
51
56
.
27.
Dennis
,
S. C. R.
, and
Chang
,
G. Z.
, 1970, “
Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers Up to 100
,”
J. Fluid Mech.
,
42
, pp.
471
489
.
28.
Sharma
,
A.
, and
Eswaran
,
V.
, 2004, “
Heat and Fluid Flow Across a Square Cylinder in the Two-Dimensional Laminar Flow Regime
,”
Numer. Heat Transfer, Part A
,
45
, pp.
247
269
.
29.
Sen
,
S.
,
Mittal
,
S.
, and
Biswas
,
G.
, 2011, “
Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Meth. Fluids
,
67
, pp.
1160
1174
.
30.
Henderson
,
R. D.
, 1995, “
Details of Drag Curve Near the Onset of Vortex Shedding
,”
Phys. Fluids
,
7
, pp.
2102
2104
.
31.
Posdziech
,
O.
, and
Grundmann
,
R.
, 2007, “
A Systematic Approach to the Numerical Calculation of Fundamental Quantities of the Two-Dimensional Flow Over a Circular Cylinder
,”
J. Fluids Struct.
,
23
, pp.
479
499
.
32.
Shimizu
,
Y.
, and
Tanida
,
Y.
, 1978, “
Fluid Forces Acting on Cylinders of Rectangular Cross-Section
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
44
, pp.
2699
2706
.
33.
Okajima
,
A.
,
Yi
,
D.
,
Sakuda
,
A.
, and
Nakano
,
T.
, 1997, “
Numerical Study of Blockage Effects on Aerodynamic Characteristics of an Oscillating Rectangular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
91
102
.
You do not currently have access to this content.