The present paper aims to investigate the dam-break flow over dry channel with an abrupt contracting part in certain downstream section. A new experiment was carried out in a smooth-prismatic channel with rectangular cross section and horizontal bed. A digital imaging technique was adopted for flow measurement and thus flood wave propagation was sensitively obtained. Synchronous filmed images of the dam-break flow were nonintrusively acquired with three cameras, through glass sidewalls of the channel. Free surface profiles and time evolution of water levels were derived directly from the recorded video images using virtual wave probe without disturbing the flow. Furthermore, the present study highlights the formation and propagation of the negative bore due to abruptly contracting channel. The measured results were compared with the numerical solution of Reynolds averaged Navier–Stokes (RANS) equations with k-ε turbulence model and good agreement was achieved. New experimental data can be useful for scientific community to validate numerical models.

References

References
1.
Valiani
,
A.
,
Caleffi
,
V.
, and
Zanni
,
A.
, 2002, “
Case Study: Malpasset Dam-Break Simulation Using a Two-Dimensional Finite Volume Method
,”
J. Hydraul. Eng.
,
128
(
5
), pp.
460
472
.
2.
Gallegos
,
H. A.
,
Schubert
,
J. E.
, and
Sanders
,
B. F.
, 2009, “
Two Dimensional High Resolution Modeling of Urban Dam-Break Flooding: A Case Study of Baldwin Hills, California
,”
Adv. Water Res.
,
32
(
8
), pp.
1323
1335
.
3.
Miller
,
S.
, and
Chaudhry
,
M. H.
, 1989, “
Dam-Break Flows in Curved Channel
,”
J. Hydraul. Eng.
,
115
(
11
), pp.
1465
1478
.
4.
Bell
,
S. W.
,
Elliot
,
R. C.
, and
Chaudhry
,
M. H.
, 1992, “
Experimental Results of Two Dimensional Dam-Break Flows
,”
J. Hydraul. Res.
,
30
(
2
), pp.
225
252
.
5.
Bellos
,
C. V.
,
Soulis
,
J. V.
, and
Sakkas
,
J. G.
, 1992, “
Experimental Investigation of Two-Dimensional Dam-Break Induced Flows
,”
J. Hydraul. Res.
,
30
(
1
), pp.
47
63
.
6.
Stansby
,
P. K.
,
Chegini
,
A.
, and
Barnes
,
T. C. D.
, 1998, “
The Initial Stages of Dam-Break Flow
,”
J. Fluid Mech.
,
374
, pp.
407
424
.
7.
Bukreev
,
V. I.
, and
Gusev
,
A. V.
, 2005, “
Initial Stage of the Generation of Dam-Break Waves
,”
Dokl. Phys.
,
50
(
4
), pp.
200
203
.
8.
Soares-Frazao
,
S.
, and
Zech
,
Y.
, 2007, “
Experimental Study of Dam-Break Flow Against an Isolated Obstacle
,”
J. Hydraul. Res.
,
45
(
Extra issue
), pp.
27
36
.
9.
Soares-Frazao
,
S.
, 2007, “
Experiments of Dam-Break Wave Over a Triangular Bottom Sill
,”
J. Hydraul. Res.
,
45
(Extra Issue), pp.
19
26
.
10.
Cochard
,
S.
, and
Ancey
,
C.
, 2008, “
Tracking the Free Surface of Time Dependent Flows: Image Processing for the Dam-Break Problem
,”
Exp. Fluids
,
44
(
1
), pp.
59
71
.
11.
Aureli
,
F.
,
Maranzoni
,
A.
,
Mignosa
,
P.
, and
Ziveri
,
C.
, 2008, “
Dam-Break Flows: Acquisition of Experimental Data Through an Imaging Technique and 2D Numerical Modeling
,”
J. Hydraul. Eng.
,
134
(
8
), pp.
1089
1101
.
12.
Aureli
,
F.
,
Maranzoni
,
A.
,
Mignosa
,
P.
, and
Ziveri
,
C.
, 2010, “
An Image Processing Technique for Measuring Free Surface of Dam-Break Flows
,”
Exp. Fluids
,
50
(
3
), pp.
665
675
.
13.
Ozmen-Cagatay
,
H.
, and
Kocaman
,
S.
, 2010, “
Dam-Break Flows During Initial Stage Using SWE and RANS Approaches
,”
J. Hydraul. Res.
,
48
(
5
), pp.
603
611
.
14.
Mohapatra
,
P. K.
, and
Bhallamudi
,
S. M.
, 1996, “
Computation of a Dam-Break Flood Wave in Channel Transitions
,”
Adv. Water Res.
,
19
(
3
), pp.
181
187
.
15.
Garcia-Navarro
,
P.
,
Fras
,
A.
, and
Villanueva
,
I.
, 1999, “
Dam-Break Flow Simulation: Some Results for One-Dimensional Models of Real Cases
,”
J. Hydrol.
,
216
(
3–4
), pp.
227
247
.
16.
Brufau
,
P.
,
Vazquez-Cendon
,
M. E.
, and
Garcia-Navarro
,
P.
, 2002, “
A Numerical Model for the Flooding and Drying of Irregular Domains
,”
Int. J. Numer. Methods Fluids
,
39
(
10
), pp.
247
275
.
17.
Gottardi
,
G.
, and
Venutelli
,
M.
, 2004, “
Central Scheme for Two-Dimensional Dam-Break Flow Simulation
,”
Adv. Water Resour.
,
27
(
3
), pp.
259
268
.
18.
Aureli
,
F.
,
Maranzoni
,
A.
,
Mignosa
,
P.
, and
Ziveri
,
C.
, 2008, “
A Weighted Surface-Depth Gradient Method for the Numerical Integration of the 2D Shallow Water Equations With Topography
,”
Adv. Water Resour.
,
31
, pp.
962
974
.
19.
Liang
,
Q.
, and
Marche
,
F.
, 2009, “
Numerical Resolution of Well-Balanced Shallow Water Equations With Complex Source Terms
,”
Adv. Water Resour.
,
32
(
6
), pp.
873
884
.
20.
Song
,
L.
,
Zhou
,
J.
,
Guo
,
J.
,
Zou
,
Q.
, and
Liu
,
Y.
, 2011, “
A Robust Well-Balanced Finite Volume Model for Shallow Water Flows With Wetting and Drying Over Irregular Terrain
,”
Adv. Water Resour.
,
34
(
7
), pp.
915
932
.
21.
Liang
,
D.
,
Falconer
,
R. A.
, and
Lin
,
B.
, 2006, “
Comparison Between TVD-Maccormack and ADI-Type Solvers of the Shallow Water Equations
,”
Adv. Water Resour.
,
29
(
12
), pp.
1833
1845
.
22.
Liang
,
Q.
, and
Borthwick
,
A. G. L.
, 2009, “
Adaptive Quadtree Simulation of Shallow Flows With Wet-Dry Fronts Over Complex Topography
,”
Comput. Fluids
,
38
(
2
), pp.
221
234
.
23.
Biscarini
,
C.
,
Francesco
,
D. S.
, and
Manciola
,
P.
, 2010, “
CFD Modelling Approach for Dam-Break Flow Studies
,”
Hydrology Earth Syst. Sci.
,
14
(
4
), pp.
705
718
.
24.
Ozmen-Cagatay
,
H.
, and
Kocaman
,
S.
, 2011. “
Dam-Break Flow in the Presence of Obstacle: Experiment and CFD Simulation
,”
Eng. Appl. Comput. Fluid Mech.
5
(
4
), pp.
541
552
.
25.
Quecedo
,
M.
,
Pastor
,
M.
,
Herreros
,
M. I.
,
Merodo
,
J. A. F.
, and
Zhang
,
Q.
, 2005, “
Comparison of Two Mathematical Models for Solving the Dam-Break Problem Using the FEM Method
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
36–38
), pp.
3984
4005
.
26.
Liang
,
Q.
, 2008. “
Simulation of Shallow Flows in Nonuniform Open Channels
,”
ASME J. Fluids Eng.
,
130
(
1
), p. 011205.
27.
Kocaman
,
S.
, 2007, “
Experimental and Theoretical Investigation of Dam-Break Problem
,” Ph.D. thesis, Civil Engineering Department, University of Cukurova, Adana, Turkey (in Turkish).
28.
Lauber
,
G.
, and
Hager
,
W. H.
, 1998, “
Experiments to Dam-Break Wave: Horizontal Channel
,”
J. Hydraul. Res.
,
36
(
3
), pp.
291
308
.
29.
30.
Bateman
,
A.
,
Granados
,
A.
,
Medina
,
V.
,
Valesco
,
D.
, and
Nalesso
,
M.
, 2006, “
Experimental Procedure to Obtain 2D Time-Space High-Speed Water Surfaces
,”
Proceedings of the International Conference on Fluvial Hydraulics
, River Flow 2006, Lisbon, Portugal, pp.
1879
1888
.
31.
Cagatay
,
H.
, and
Kocaman
,
S.
, 2008, “
Experimental Study of Tail Water Level Effects on Dam-Break Flood Wave Propagation
,”
Proceedings of the International Conference on Fluvial Hydraulics
, River Flow 2008, Cesme, Turkey, pp.
635
644
.
32.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
33.
Flow Science Inc.
, 2007,
Flow-3D User’s Manuals
,
Santa Fe
,
NM
.
34.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
35.
Docherty
,
N. J.
, and
Chanson
,
H.
, 2010,
Unsteady Turbulence in Breaking Tidal Bores: The Effects of Bed Roughness
,
The University of Queensland Press
,
Brisbane, Queensland, Australia
.
36.
Brufau
,
P.
,
García-Navarro
,
P.
, and
Vázquez-Cendón
,
M. E.
, 2004 “
Zero Mass Error Using Unsteady Wetting-Drying Conditions in Shallow Flows Over Dry Irregular Topography
,”
Int. J. Numer. Methods Fluids
45
, pp.
1047
1082
.
37.
Zokagoa
,
J.-M.
, and
Soulaïmani
,
A.
, 2010, “
Modeling of Wetting–Drying Transitions in Free Surface Flows Over Complex Topographies
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
2281
2304
.
38.
Erduran
,
K. S.
,
Kutija
,
V.
, and
Hewett
,
C. J. M.
, 2002, “
Performance of Finite Volume Solutions to the Shallow Water Equations With Shock-Capturing Schemes
,”
Int. J. Numer. Methods Fluids
,
40
(
10
), pp.
1237
1273
.
You do not currently have access to this content.