The problem of boundary layer flow and heat transfer induced due to nanofluid over a vertical plate is investigated. The transport equations employed in the analysis include the effect of Brownian motion and thermophoresis. We used a convective heating boundary condition instead of a widely employed thermal conduction of constant temperature or constant heat flux. The solution for the temperature and nanoparticle concentration depends on six parameters, viz., convective heating parameter A, Prandtl number Pr, Lewis number Le, Brownian motion Nb, buoyancy ratio parameter Nr, and the thermophoresis parameter Nt. Similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher order ordinary differential equations. These equations were solved numerically using Runge-Kutta fourth order method with shooting technique. The effects of the governing parameters on flow field and heat transfer characteristics were obtained and discussed. Numerical results are obtained for velocity, temperature, and concentration distribution as well as the local Nusselt number and Sherwood number. It is found that the local Nusselt number and Sherwood number increase with an increase in convective parameter A and Lewis number Le. Likewise, the local Sherwood number increases with an increase in both A and Le. A comparison with the previous study available in literature has been done and we found an excellent agreement with them.

References

References
1.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Development and Applications of Non-Newtonian Flows (MD 66)
, Vol. 231,
D. A.
Siginer
, and
H. P.
Wang.
, eds.,
ASME
, pp.
99
105
.
2.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.
3.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwoow
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivities Enhancement on Nanotube Suspension
,”
Appl. Phys. Lett.
,
79
, pp.
2252
2254
.
4.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahaill
,
D. G.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
(
6
), pp.
36
44
.
5.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluid
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.
6.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
, 2010, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Thermal Sci.
,
49
, pp.
243
247
.
7.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
, 2010, “
Boundary-Layer Flow of Nanofluids Over a Moving Surface in a Flowing Fluid
,”
Int. J. Thermal Sci.
,
49
, pp.
1663
1668
.
8.
Hamad
,
M. A.
,
Pop
,
I.
, and
Ismali
,
A. I.
, 2011, “
Magnetic Field Effects on Free Convection Flow of a Nanofluid Past a Vertical Semi-Infinite Flat Plate
,”
Nonlinear Anal.: Real World Appl.
,
12
, pp.
1338
1346
.
9.
Ahmad
,
S.
,
Rohni
,
A. M.
, and
Pop
,
I.
, 2011, “
Blasius and Sakiadis Problems in Nanofluids
,”
Acta Mech.
,
218
, pp.
195
204
.
10.
Makinde
,
O. D.
, and
Aziz
,
A.
, 2011, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With Convective Boundary Condition
,”
Int. J. Thermal Sci.
,
50
, pp.
1326
1332
.
11.
Vajravelu
,
K.
,
Prasad
,
K. V.
,
Jinho
,
L.
,
Changhoon
,
L.
,
Pop
,
I.
,
Robert
,
A.
, and
Gorder
,
V.
, 2011, “
Convective Heat Transfer in the Flow of Viscous Ag-Water and Cu-Water Nanofluids Over a Stretching Surface
,”
Int. J. Thermal Sci.
,
50
, pp.
843
851
.
12.
Mustafa
,
M.
,
Hayat
,
T.
,
Pop
,
I.
,
Ashhar
,
S.
, and
Obaidat
,
S.
, 2011, “
Stagnation Point Flow of a Nanofluid Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
54
, pp.
5588
5594
.
13.
Bachok
,
N.
,
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2010, “
Flow and Heat Transfer at a General Three-Dimensional Stagnation Point in Nanofluid
,”
J. Phys. B
,
405
, pp.
4914
4918
.
14.
Khan
,
W. A.
, and
Pop
,
I.
, 2010, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2477
2483
.
15.
Aziz
,
A.
, 2009, “
Similarity Solution for Laminar Thermal Boundary Layer Over a Flat Plate With a Convective Surface Boundary Condition
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
1064
1068
.
16.
Ishak
,
A.
,
Yacob
,
A.
, and
Bachok
,
N.
, 2011, “
Radiation Effect on the Thermal Boundary Layer Flow Over a Moving Plate With Convective Condition
,”
Meccanica
,
46
, pp.
795
801
.
17.
Bataller
,
C.
, 2008, “
Radiation Effect for the Blasius and Sakiadis Flows With Convective Surface Boundary Condition
,”
Appl. Math. Comput.
,
206
, pp.
832
840
.
18.
Yao
,
S.
,
Fang
,
T.
, and
Zhong
,
Y.
, 2011, “
Heat Transfer of a Generalized Stretching/Shrinking Wall Problem With Convective Boundary Condition
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
752
760
.
19.
Ishak
,
A.
, 2010, “
Similarity Solution for Flow and Heat Transfer Over a Permeable Surface With Convective Boundary Condition
,”
Appl. Math. Comput.
,
217
, pp.
837
842
.
20.
Markin
,
H.
, and
Pop
,
I.
, 2011, “
The Forced Convection Flow of a Uniform Stream Over a Flat Surface With a Convective Surface Boundary Condition
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
3602
3609
.
21.
Makinde
,
O. D.
, and
Olanrewaju
,
P. O.
, 2010, “
Buoyancy Effects on Thermal Boundary Layer Over a Vertical Plate With a Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
132
, p.
044502
.
22.
Subhashinia
,
V.
,
Samuela
,
N.
, and
Pop
,
I.
, 2011, “
Effects of Buoyancy Assisting and Opposing Flows on Mixed Convection Boundary Layer Flow Over a Permeable Vertical Surface
,”
Int. Commun. Heat Mass Transfer
,
38
(
4
), pp.
499
503
.
23.
Hayat
,
T.
,
Qasim
,
M.
, and
Hendi
,
A.
, 2012, “
Boundary Layer Flow of a Jeffery Fluid With Convective Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
69
, pp.
1350
1362
.
24.
Ajadi
,
O.
,
Adegoke
,
A.
, and
Aziz
,
A.
, 2009, “
Slip Boundary Layer Flow of Non-Newtonian Fluid Over a Flat Plate With Convective Thermal Boundary Condition
,”
Int. J. Nonlinear Sci.
,
8
(
3
), pp.
300
306
.
25.
Yacob
,
N. A.
,
Ishak
,
A.
,
Pop
,
I.
, and
Vajravelu
,
K.
, 2011, “
Boundary Layer Flow Past a Stretching/Shrinking Surface Beneath an External Uniform Shear Flow With Convective Surface Boundary Condition in a Nanofluid
,”
Nanoscale Res. Lett.
,
6
, p.
314
.
You do not currently have access to this content.