An analysis is made of the steady laminar axisymmetric stagnation point flow of an incompressible viscous fluid in a porous medium impinging on a permeable radially stretching sheet with heat generation or absorption. A uniform suction or blowing is applied normal to the plate which is maintained at a constant temperature. Similarity transformation is used to transform the governing partial differential equations to ordinary differential equations. The finite difference method and generalized Thomas algorithm are used to solve the governing nonlinear momentum and energy equations. The effects of the uniform suction/blowing velocity, the stretching parameter and the heat generation/absorption coefficient on both the flow field and heat transfer are presented and discussed. The results indicate that increasing the stretching parameter or the suction/blowing velocity decreases both the velocity and thermal boundary layer thicknesses. The effect of the stretching parameter on the velocity components is more apparent for suction than blowing while its effect on the temperature and rate of heat transfer at the wall is clearer in the case of blowing than suction.

References

1.
Attia
,
H. A.
, 2006, “
On the Effectiveness of Ion Slip on Steady MHD Flow and Heat Transfer Above a Rotating Disk With Ohmic Heating
,”
Trans. ASME J. Fluids Eng.
,,
128
(
5
), pp.
1236
1239
.
2.
Ariel
,
P. D.
, 1994, “
Stagnation Point Flow With Suction: An Approximate Solution
,”
J. Appl. Mech.
,
61
(
4
), pp.
976
978
.
3.
Weidman
,
P. D.
, and
Mahalingam
,
S.
, 1997, “
Axisymmetric Stagnation Point Flow Impinging on a Transversely Oscillating Plate With Suction
,”
J. Eng. Math.
,
31
(
4
), pp.
305
318
.
4.
Attia
,
H. A.
, 2003, “
Hydromagnetic Stagnation Point Flow With Heat Transfer Over a Permeable Surface
,”
Arab. J. Sci. Eng.
,
28
(
1B
), pp.
107
112
.
5.
Attia
,
H. A.
, 2003, “
Homann Magnetic Flow and Heat Transfer With Uniform Suction or Injection
,”
Can. J. Phys.
,
81
(
10
), pp.
1223
1230
.
6.
Crane
,
L. J.
, 1970, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
, pp.
645
647
.
7.
Carragher
,
P.
, and
Crane
,
L. J.
, 1982, “
Heat Transfer on a Continuous Stretching Sheet
,”
Z. Angew. Math. Mech.
,
62
, pp.
564
573
.
8.
Dutta
,
B. K.
,
Roy
,
P.
, and
Gupta
,
A. S.
, 1985, “
Temperature Field in Flow Over a Stretching Surface With Uniform Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
12
, pp.
89
94
.
9.
Chiam
,
T. C.
, 1994, “
Stagnation Point Flow Towards a Stretching Sheet
,”
J. Phys. Soc. Jpn.
,
63
, pp.
2443
2444
.
10.
Layek
,
G. C.
,
Mukhopadhyay
,
S.
, and
Samad
,
Sk. A.
, 2006, “
Scaling Group of Transformations for Boundary Layer Stagnation-Point Flow Through a Porous Medium Towards a Heated Stretching Sheet
,”
Math. Modell. Numer. Anal.
,
11
(
2
), pp.
187
197
.
11.
Attia
,
H. A.
, 2007, “
On the Effectiveness of Porosity on Stagnation Point Flow Towards a Stretching Sheet With Heat Generation
,”
Comput. Math. Sci.
,
38
, pp.
741
745
.
12.
Ayub
,
M.
,
Zaman
,
H.
,
Sajid
,
M.
, and
Hayat
,
T.
, 2008, “
Analytical Solution of Stagnation-Point Flow of a Viscoelastic Fluid Towards a Stretching Surface
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
1822
1835
.
13.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
, and
Gupta
,
A. S.
, 2009, “
Magnetohydrodynamic Layer Stagnation-Point Flow of Power-Law Fluid Towards a Stretching Surface
,”
Int. J. Nonlinear Mech.
,
44
, pp.
124
129
.
14.
Ishak
,
A.
,
Jafar
,
K.
,
Nazar
,
R.
, and
Pop
,
I.
, 2009, “
MHD Stagnation-Point Flow Towards a Stretching Sheet
,”
Physica A
,
388
, pp.
3377
3383
.
15.
Hayat
,
T.
,
Abbas
,
Z.
, and
Sajid
,
M.
, 2009 ,“
MHD Stagnation-Point Flow of an Upper-Convected Maxwell Fluid Over a Stretching Surface
,”
Chaos Solitons Fractals
,
39
, pp.
840
848
.
16.
Van Gorder
,
R. A.
, and
Vajravelu
,
K.
, 2010, “
Hydromagnetic Stagnation Point Flow of a Second Grade Fluid over a Stretching Sheet
,”
Mech. Res. Commun.
,
37
, pp.
113
118
.
17.
Subhas
,
M.
,
Kumar
,
K. A.
, and
Ravikumara
,
R.
, 2011, “
MHD Flow and Heat Transfer With Effects of Buoyancy, Viscous and Joules Dissipations Over a Nonlinear Vertical Stretching Porous Sheet With Partial Slip
,”
Engineering
,
3
, pp.
285
291
.
18.
Mahapatra
,
T. R.
, and
Gupta
,
A. S.
, 2002, “
Heat Transfer in Stagnation-Point Flow Towards a Stretching Sheet
,”
Heat Mass Transfer
,
38
, pp.
517
521
.
19.
Sajid
,
M.
,
Hayat
,
T.
, and
Asghar
,
S.
, 2007, “
Non-Similar Solution for the Axisymmetric Flow of a Third-Grade Fluid Over a Radially Stretching Sheet
,”
Acta Mech.
,
189
, pp.
193
205
.
20.
Sajid
,
M.
,
Ahmad
,
I.
,
Hayat
,
T.
, and
Ayub
,
M.
, 2008, “
Series Solution for Unsteady Axisymmetric Flow and Heat Transfer Over a Radially Stretching Sheet
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
2193
2202
.
21.
Sahoo
,
B.
, 2010, “
Effects of Viscous Dissipation and Joule Heating on the MHD Flow and Heat Transfer of a Second-Grade Fluid Past a Radially Stretching Sheet
,”
Appl. Math. Mech.: (Engl. Ed.,)
,
31
(
2
), pp.
159
173
.
22.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
, 3rd ed.,
Springer-Verlag
,
New York
.
23.
Ingham
,
D. B.
, and
Pop
,
I.
, 2002,
Transport Phenomena in Porous Media
,
Pergamon
,
Oxford
.
24.
Khaled
,
A. R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4989
5003
.
25.
Darcy
,
H.
, 1856, Le Fontaines Publiques de la Ville de Dijon, Dalmont, Paris.
26.
White
,
M. F.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.