Owing to the many potential industrial and biological applications of microfluid mechanics, it has recently become an attractive research topic. However, researchers have mainly concentrated on microchannel flows and studies investigating micro-orifice flows are rare cases. In the present study, the results from experiments conducted on flows through micro-orifices with diameters of 100 μm, 50 μm, and 25 μm are presented. In these experiments, the thrust and diameter of observed outflow jets are measured. The resultant thrust and diameter of the jets for the 100 μm orifice flow agree with the numerical predictions obtained via the Navier–Stokes equations. Conversely, for an orifice with a diameter of 50 μm or less, it is found that the thrust is lower than that predicted and the existence of jet swell becomes apparent. With the estimated elastic stress proportional to squared mean velocity, a change in the elasticity of the water as it flows through a micro-orifice is strongly suggested.

References

1.
Hasegawa
,
T.
,
Ushida
,
A.
, and
Narumi
,
T.
, 2009, “
Huge Reduction in Pressure Drop of Water, Glycerol/Water Mixture, and Aqueous Solution of Polyethylene Oxide in High Speed Flows Through Micro-Orifices
,”
Phys. Fluids
,
21
, p.
052002
.
2.
Hasegawa
,
T.
,
Suganuma
,
M.
, and
Watanabe
,
H.
, 1997, “
Anomaly of Excess Pressure Drops of the Flow Through Very Small Orifices
,”
Phys. Fluids
,
9
, pp.
1
3
.
3.
Ushida
,
A.
,
Hasegawa
,
T.
, and
Narumi
,
T.
, 2010, “
Drag Reduction for Liquid Flow Through Micro-Apertures
,”
J. Non-Newton. Fluid Mech.
,
165
, pp.
1516
1524
.
4.
Ushida
,
A.
,
Hasegawa
,
T.
,
Kudou
,
S.
,
Kawami
,
M.
,
Uchiyama
,
H.
, and
Narumi
,
T.
, 2011, “
Flow Properties of Several Types of Liquid Flows Through Micro-Orifices
,”
J. Fluid Sci. Technol.
,
6
, pp.
802
811
.
5.
Ushida
,
A.
,
Hasegawa
,
T.
,
Nakajima
,
T.
,
Uchiyama
,
H.
, and
Narumi
,
T.
, 2012, “
Drag Reduction Effect of Nanobubble Mixture Flows Through Micro-Orifices and Capillaries
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
54
59
.
6.
Ushida
,
A.
,
Hasegawa
,
T.
,
Kawami
,
M.
,
Uchiyama
,
H.
,
Narumi
,
T.
, and
Kayaba
,
R.
, 2012, “
Flow Properties of Microbubble/Polyethylene Glycol Mixtures Passing Through Orifices and Slits
,”
Nihon Reoroji Gakkaishi (J. Soc. Rheol., Jpn.)
,
40
, pp.
61
68
.
7.
Amaki
,
K.
,
Hasegawa
,
T.
, and
Narumi
,
T.
, 2006, “
Drag Reduction in the Flow of Aqueous Solutions of Detergent Through Mesh Screens
,”
Nihon Reoroji Gakkaishi (J. Soc. Rheol., Jpn.)
,
36
, pp.
125
131
.
8.
Hasegawa
,
T.
,
Watanabe
,
H.
,
Sato
,
T.
,
Watanabe
,
T.
,
Takahashi
,
M.
,
Narumi
,
T.
, and
Carlos
,
T.
, 2007, “
Anomalous Reduction in Thrust/Reaction of Water Jets Issuing From Microapertures
,”
Phys. Fluids
,
19
, p.
053102
.
9.
Lumley
,
J. L.
, 1969, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
, pp.
367
384
.
10.
Rose
,
G. D.
, and
Foster
,
K. L.
, 1989, “
Drag Reduction and Rheological Properties of Cationic Viscoelastic Surfactant Formulations
,”
J. Non-Newton. Fluid Mech.
,
31
, pp.
59
85
.
11.
Den Toonder
,
J. M. J.
,
Hulsen
,
M. A.
,
Kuiken
,
G. D. C.
, and
Nieuwstadt
,
F. T. M.
, 1997, “
Drag Reduction by Polymer Additives: Numerical and Laboratory Experiments
,”
J. Fluid Mech.
,
337
, pp.
193
231
.
12.
Stone
,
P. A.
,
Roy
,
A.
,
Larson
,
R. G.
,
Waleffe
,
F.
, and
Graham
,
M. D.
, 2004, “
Polymer Drag Reduction in Exact Coherent Structures of Plane Shear Flow
,”
Phys. Fluids
,
16
, pp.
3470
3482
.
13.
Hsiai
,
T.
,
Yang
,
J. M.
,
Cho
,
S.
,
Cho
,
K.
,
Yang
,
X.
,
Tai
,
Y. C.
, and
Ho
,
C. M.
, 2002, “
Micromachined Particle Filters for Low Power Consumption
,”
ASME J. Fluids Eng.
,
124
, pp.
1053
1056
.
14.
Kusmanto
,
F.
,
Jacobsen
,
E.
, and
Finlayson
,
B. A.
, 2004, “
Applicability of Continuum Mechanics to Pressure Drop in Small Orifices
,”
Phys. Fluids
,
16
, pp.
4129
4134
.
15.
Oliver
,
D. R.
, 1966, “
The Expansion/Contraction Behavior of Laminar Liquid Jets
,”
J. Chem. Eng.
,
44
, pp.
100
107
.
16.
Lunkenheimer
,
K.
, and
Wantke
,
K. D.
, 1981, “
Determination of the Surface Tension of Surfactant Solutions Applying the Method of Lecomte du Noüy (Ring Tensiometer)
,”
Colloid Polym. Sci.
,
259
, pp.
354
366
.
17.
Eastoe
,
J.
, and
Dalton
,
J. S.
, 2000, “
Dynamic Surface Tension and Adsorption Mechanisms of Surfactants at the Air-Water Interface
,”
Adv. Colloid Interface Sci.
,
85
, pp.
103
144
.
18.
Karasawa
,
M.
,
Hasegawa
,
T.
,
Komaki
,
M.
, and
Narumi
,
T.
, 2006, “
Washing Method by Introducing Air Into an Alternating Flow System
,”
J. Oleo. Sci.
,
55
, pp.
521
527
.
19.
Hasegawa
,
T.
,
Karasawa
,
M.
, and
Narumi
,
T.
, 2008, “
Modeling and Measurement of the Dynamic Surface Tension of Surfactant Solutions
,”
ASME J. Fluids Eng.
,
130
, p.
081505
.
20.
Vrentus
,
J. S.
,
Duda
,
J. L.
, and
Bargeron
,
K. G.
, 1966, “
Effect of Axial Diffusion of Vorticity on Flow Development in Circular Conduits: Part I. Numerical Solutions
,”
AICHE J.
,
12
, pp.
837
844
.
21.
Christiansen
,
E. B.
,
Kelsey
,
S. J.
, and
Carter
,
T. R.
, 1972, “
Laminar Tube Flow Through an Abrupt Contraction
,”
AICHE J.
,
18
, pp.
372
380
.
22.
Newman
,
S.
, and
Trementozzi
,
Q. A.
, 1965, “
Barus Effect in Filled Polymer Melts
,”
J. Appl. Polym. Sci.
,
9
, pp.
3071
3089
.
23.
Bagley
,
E. B.
, and
Duffey
,
H. J.
, 1970, “
Recoverable Shear Strain and the Barus Effect in Polymer Extrusion
,”
J. Rheol.
,
14
, pp.
545
553
.
24.
Lugt
,
P. M.
, and
Ten Napel
,
W. E.
, 1995, “
The Influence of Elastic Deformation of the Roll and the Sheet in a Hydrodynamically Lubricated Cold Rolling Process
,”
ASME J. Tribol.
,
117
, pp.
468
475
.
25.
Ji
,
B. H.
,
Wang
,
C. G.
, and
Wang
,
Y. X.
, 2006, “
Effect of Jet Stretch on Polyacrylonitrile As-Spun Fiber Formation
,”
J. Appl. Polym. Sci.
,
103
, pp.
3348
3352
.
26.
Pearson
,
J. R. A.
, 1978, “
Polymer Flows Dominated by High Heat Generation and Low Heat Transfer
,”
Polym. Eng. Sci.
,
18
, pp.
222
229
.
27.
Baranger
,
J.
, and
Mikelić
,
A.
, 1995, “
Stationary Solutions to a Quasi-Newtonian Flow With Viscous Heating
,”
Math. Models Methods Appl. Sci.
,
5
, pp.
725
738
.
28.
Morini
,
G. L.
, 2005, “
Viscous Heating in Liquid Flows in Micro-Channels
,”
Int. J. Heat Mass Transf.
,
48
, pp.
3637
3647
.
29.
Churaev
,
N. V.
,
Sobolev
,
V. D.
, and
Somov
,
A. N.
, 1984, “
Slippage of Liquids Over Lyophobic Solid Surfaces
,”
J. Colloid Interface Sci.
,
97
, pp.
574
581
.
30.
Kalika
,
D. S.
, and
Denn
,
M. M.
, 1987, “
Wall Slip and Extrudate Distortion in Linear Low-Density Polyethylene
,”
J. Rheol.
,
31
, pp.
815
834
.
31.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
, 2002, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
, pp.
L9
L12
.
32.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transf.
,
45
, pp.
3477
3489
.
33.
Li
,
J.
, and
Cheng
,
P.
, 2004, “
Bubble Cavitation in a Microchannel
,”
Int. J. Heat Mass Transf.
,
47
, pp.
2689
2698
.
34.
Mishra
,
C.
, and
Peles
,
Y.
, 2005, “
Cavitation in Flow Through a Micro-Orifice Inside a Silicon Microchannel
,”
Phys. Fluids
,
17
, p.
013601
.
35.
Mishra
,
C.
, and
Peles
,
Y.
, 2005, “
Flow Visualization of Cavitating Flows Through a Rectangular Slot Micro-Orifice Ingrained in a Microchannel
,”
Phys. Fluids
,
17
, p.
113602
.
36.
Buffat
,
P.
, and
Borel
,
J.
, 1976, “
Size Effect on the Melting Temperature of Gold Particles
,”
Phys. Rev. A
,
13
, pp.
2287
2298
.
37.
Nakada
,
K.
, and
Fujita
,
M.
, 1996, “
Edge State in Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence
,”
Phys. Rev. B
,
54
, pp.
17954
17961
.
38.
Ho
,
C. M.
, and
Tai
,
Y. C.
, 1998, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
579
612
.
39.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transf.
,
46
, pp.
2737
2753
.
40.
Cho
,
J.
,
Joshi
,
M. S.
, and
Sun
,
C. T.
, 2006, “
Effect of Inclusion Size on Mechanical Properties of Polymeric Composites With Micro and Nano Particles
,”
Compos. Sci. Technol.
,
66
, pp.
1941
1952
.
41.
Bondi
,
A.
, 1964, “
van der Waals Volumes and Radii
,”
J. Phys. Chem.
,
68
, pp.
441
451
.
42.
Hasegawa
,
T.
, and
Nakamura
,
H.
, 1991, “
Experimental Study of the Elongational Stress of Dilute Polymer Solutions in Orifice Flows
,”
J. Non-Newton. Fluid Mech.
,
38
, pp.
159
181
.
43.
Sekino
,
T.
,
Hasegawa
,
T.
, and
Narumi
,
T.
, 1995, “
Normal Force Generated in the Flow of Viscoelastic Fluids Between Two Rollers Rotating at Relatively Different Speeds
,”
J. Rheol.
,
39
, p.
795
.
44.
Hasegawa
,
T.
,
Asama
,
H.
, and
Narumi
,
T.
, 2003, “
A Simple Method for Measuring Elastic Stresses by Jet Thrust and Some Characteristics of Tube Flows
,”
Nihon Reoroji Gakkaishi (J. Soc. Rheol., Jpn.)
,
31
, pp.
243
252
.
45.
Spiegelberg
,
S. H.
, and
McKinley
,
G. H.
, 1996, “
Stress Relaxation and Elastic Decohesion of Viscoelastic Polymer Solutions in Extensional Flow
,”
J. Non-Newton. Fluid Mech.
,
67
, pp.
49
76
.
46.
Heymann
,
B.
, and
Grubmuller
,
H.
, 1999, “
Elastic Properties of Poly(ethylene-Glycol) Studied by Molecular Dynamics Stretching Simulations
,”
Chem. Phys. Lett.
,
307
, pp.
425
431
.
47.
Walls
,
H. J.
,
Caines
,
S. B.
,
Sanchez
,
A. M.
, and
Khan
,
S. A.
, 2003, “
Yield Stress and Wall Slip Phenomena in Colloidal Silica Gels
,”
J. Rheol.
,
47
, pp.
847
868
.
You do not currently have access to this content.