Momentum transport in porous media exists in numerous engineering and process applications, e.g., ground water pollution, storage of nuclear waste, heat exchangers, and chemical reactors. In many of such applications, the porous medium is confined by solid boundaries. These impermeable boundaries give rise to shear stress and boundary layers. The Brinkman-extended Darcy equation describes the momentum transport due to Newtonian fluid flow in confined porous media. This equation is solved analytically in a cylindrical system, employing an existing fully-developed boundary-layer concept particular to porous media flows. The volume-averaged velocity increases as the distance from the boundary increases reaching a maximum at the center. The mean and maximum velocities are obtained and their behavior is investigated in terms of pertinent flow parameters. The friction factor is defined based on the mean velocity and is found to be inversely proportional to the Reynolds number, the Darcy number, and the mean velocity. The analytical results are verified by experiments using two types of metal foam. In the Darcy regime, reasonably good agreement is found between the analytical and the experimental friction factors for the 20-pore-per-inch foam, while a poor agreement is found for the 10-pore-per-inch foam.

References

References
1.
Poulikakos
,
D.
, and
Renken
,
K.
, 1987, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effect of Flow Inertia, Variable Porosity, and Brinkman Friction
,”
ASME J. Heat Transfer
,
109
, pp.
880
888
.
2.
Amiri
,
A.
and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
3.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
, pp.
557
565
.
4.
Angirasa
,
D.
, 2002, “
Forced Convective Heat Transfer in Metallic Fibrous Materials
,”
ASME J. Heat Transfer
,
124
, pp.
739
745
.
5.
Nield
,
D. A.
, and
Bejan
,
A.
, 1992,
Convection in Porous Media
,
2nd ed.
,
Springer
,
New York
, pp.
12
.
6.
Kaviany
,
M.
, 1991,
Principal of Heat Transfer in Porous Media
,
Springer
,
New York
, pp.
52
,
70
,
94
.
7.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
8
), pp.
195
203
.
8.
Yano
,
H.
, and
Kieda
,
A.
, 1991, “
The Fundamental Solution of Brinkman’s Equation in Two Dimensions
,”
Fluid Dyn. Res.
,
7
, pp.
109
118
.
9.
Beckermann
,
C.
, and
Viskanta
,
R.
, 1987, “
Forced Convection Boundary Layer Flow and Heat Transfer Along a Flat Plate Embedded in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1547
1987
.
10.
Zhao
,
B. Q.
,
Pantokratoras
,
A.
,
Fang
,
T. G.
, and
Liao
,
S. J.
, 2010, “
Flow of a Weakly Conducting Fluid in a Channel Filled With a Darcy-Brinkman-Forchheimer Porous Medium
,”
Transp. Porous Media
,
85
, pp.
131
142
.
11.
Vafai
,
K.
, and
Kim
,
S. J.
, 1989, “
Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
,
111
, pp.
1103
1106
.
12.
Vafai
,
K.
, and
Thiyagaraja
,
R.
, 1987, “
Analysis of Flow and Heat Transfer at the Interface Region of a Porous Medium
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1391
1405
.
13.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
, 1987, “
Forced Convection in a Duct Partially Filled With a Porous Medium
,”
ASME J. Heat Transfer
,
109
, pp.
653
662
.
14.
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 2004, “
Analysis of Flow and Heat Transfer in Porous Media Imbedded Inside Various-Shaped Ducts
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1889
1905
.
15.
Minkowycz
,
W. J.
, and
Haji-Sheikh
,
A.
, 2006, “
Heat Transfer in Parallel Plates and Circular Porous Passages With Axial Conduction
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2381
2390
.
16.
Du Plassis
,
P.
Montillet
,
A.
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foam
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.
17.
Fourie
,
J. G.
, and
Du Plassis
,
J. P.
, 2002, “
Pressure Drop Modeling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
, pp.
2781
2789
.
18.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1017
1031
.
19.
Despois
,
J.-F.
, and
Mortensen
,
A.
, 2005, “
Permeability of Open-Pore Microcellular Materials
,”
Acta Mater.
,
53
, pp.
1381
1388
.
20.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2006, “
Direct Simulation of Transport in Open-Cell Metal Foams
,”
ASME J. Heat Transfer
,
128
, pp.
793
799
.
21.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2010, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A
,
58
, pp.
527
544
.
22.
Antohe
,
B. V.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
, 1997, “
Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices
,”
ASME J. Fluids Eng.
,
119
, pp.
404
411
.
23.
Lage
,
J. L.
,
Antohe
,
B. V.
, and
Nield
,
D. A.
, 1997, “
Two Types of Nonlinear Pressure-Drop Versus Flow-Rate Relation Observed for Saturated Porous Media
,”
ASME J. Fluids Eng.
,
119
, pp.
700
706
.
24.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
25.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2000, “
Flow and Heat Transfer Correlations for Porous Fin in Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
, pp.
572
578
.
26.
Liu
,
J. F.
,
Wu
,
W. T.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
, 2006, “
Measurement and Correlation of Friction Characteristic of Flow Through Foam Matrixes
,”
Exp. Therm. Fluid Sci.
,
30
, pp.
329
226
.
27.
Myers
,
G. E.
, 1998,
Analytical Methods in Conduction Heat Transfer
,
2nd ed.
,
AMCHT Publications
,
Madison, WI
, pp.
46
.
28.
Dukhan
,
N.
, and
Patel
,
K.
, 2011, “
Effect of Sample’s Length on Flow Properties of Open-Cell Metal Foam and Pressure-Drop Correlations
,”
J. Porous Mater.
,
18
(
6
), pp.
655
665
.
29.
Bonnet
,
J.-P.
,
Topin
,
F.
, and
Tadrist
,
L.
, 2008, “
Flow Laws in Metal Foams: Compressibility and Pore Size Effects
,”
Transp. Porous Media
,
73
, pp.
233
254
.
30.
Figliola
,
R.
, and
Beasley
,
D.
, 2000,
Theory and Design for Mechanical Measurements
,
John Wiley and Sons
,
New York
, pp.
149
163
.
31.
White
,
F. M.
, 2003,
Fluid Mechanics
,
5th ed.
,
McGraw-Hill
,
New York
, pp.
771
.
32.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2002, “
The Effect of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
, pp.
263
272
.
You do not currently have access to this content.